Max Sarmet, Elska Kaczmarek, Alexane Fauveau, Kendall Steer, Alex-Ann Velasco, Ani Smith, Maressa Kennedy, Hannah Shideler, Skyler Wallace, Thomas Stroud, Morgan Blilie, Christopher J Mayerl
{"title":"A Machine Learning Pipeline for Automated Bolus Segmentation and Area Measurement in Swallowing Videofluoroscopy Images of an Infant Pig Model.","authors":"Max Sarmet, Elska Kaczmarek, Alexane Fauveau, Kendall Steer, Alex-Ann Velasco, Ani Smith, Maressa Kennedy, Hannah Shideler, Skyler Wallace, Thomas Stroud, Morgan Blilie, Christopher J Mayerl","doi":"10.1007/s00455-025-10829-z","DOIUrl":null,"url":null,"abstract":"<p><p>Feeding efficiency and safety are often driven by bolus volume, which is one of the most common clinical measures of assessing swallow performance. However, manual measurement of bolus area is time-consuming and suffers from high levels of inter-rater variability. This study proposes a machine learning (ML) pipeline using ilastik, an accessible bioimage analysis tool, to automate the measurement of bolus area during swallowing. The pipeline was tested on 336 swallows from videofluoroscopic recordings of 8 infant pigs during bottle feeding. Eight trained raters manually measured bolus area in ImageJ and also used ilastik's autocontext pixel-level labeling and object classification tools to train ML models for automated bolus segmentation and area calculation. The ML pipeline trained in 1h42min and processed the dataset in 2 min 48s, a 97% time saving compared to manual methods. The model exhibited strong performance, achieving a high Dice Similarity Coefficient (0.84), Intersection over Union (0.76), and inter-rater reliability (intraclass correlation coefficient = 0.79). The bolus areas from the two methods were highly correlated (R² = 0.74 overall, 0.78 without bubbles, 0.67 with bubbles), with no significant difference in measured bolus area between the methods. Our ML pipeline, requiring no ML expertise, offers a reliable and efficient method for automatically measuring bolus area. While human confirmation remains valuable, this pipeline accelerates analysis and improves reproducibility compared to manual methods. Future refinements can further enhance precision and broaden its application in dysphagia research.</p>","PeriodicalId":11508,"journal":{"name":"Dysphagia","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dysphagia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00455-025-10829-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Feeding efficiency and safety are often driven by bolus volume, which is one of the most common clinical measures of assessing swallow performance. However, manual measurement of bolus area is time-consuming and suffers from high levels of inter-rater variability. This study proposes a machine learning (ML) pipeline using ilastik, an accessible bioimage analysis tool, to automate the measurement of bolus area during swallowing. The pipeline was tested on 336 swallows from videofluoroscopic recordings of 8 infant pigs during bottle feeding. Eight trained raters manually measured bolus area in ImageJ and also used ilastik's autocontext pixel-level labeling and object classification tools to train ML models for automated bolus segmentation and area calculation. The ML pipeline trained in 1h42min and processed the dataset in 2 min 48s, a 97% time saving compared to manual methods. The model exhibited strong performance, achieving a high Dice Similarity Coefficient (0.84), Intersection over Union (0.76), and inter-rater reliability (intraclass correlation coefficient = 0.79). The bolus areas from the two methods were highly correlated (R² = 0.74 overall, 0.78 without bubbles, 0.67 with bubbles), with no significant difference in measured bolus area between the methods. Our ML pipeline, requiring no ML expertise, offers a reliable and efficient method for automatically measuring bolus area. While human confirmation remains valuable, this pipeline accelerates analysis and improves reproducibility compared to manual methods. Future refinements can further enhance precision and broaden its application in dysphagia research.
期刊介绍:
Dysphagia aims to serve as a voice for the benefit of the patient. The journal is devoted exclusively to swallowing and its disorders. The purpose of the journal is to provide a source of information to the flourishing dysphagia community. Over the past years, the field of dysphagia has grown rapidly, and the community of dysphagia researchers have galvanized with ambition to represent dysphagia patients. In addition to covering a myriad of disciplines in medicine and speech pathology, the following topics are also covered, but are not limited to: bio-engineering, deglutition, esophageal motility, immunology, and neuro-gastroenterology. The journal aims to foster a growing need for further dysphagia investigation, to disseminate knowledge through research, and to stimulate communication among interested professionals. The journal publishes original papers, technical and instrumental notes, letters to the editor, and review articles.