Jinwei Jia, Min Gao, Yuying Liang, Xinyu Dao, Yuanwei Yin, Zhuangzhi Han
{"title":"Research on Optimal Convergence Design of Low Intercept Point-Like Beam for FDA-MIMO Radio Detector Based on Beam Entropy.","authors":"Jinwei Jia, Min Gao, Yuying Liang, Xinyu Dao, Yuanwei Yin, Zhuangzhi Han","doi":"10.3390/e27040421","DOIUrl":null,"url":null,"abstract":"<p><p>The technology of anti-informational interference is a research hotspot in radio detectors. According to the workflow of first interception and then interference for the jammer, improving low interception can fundamentally improve the anti-jamming ability of the radio detector. Airspace low interception is one of the most promising research directions. FDA-MIMO technology holds significant potential for application in this field. Therefore, this paper investigates the design principle of an FDA-MIMO radio detector with low beam entropy. From the perspectives of information acquisition and countermeasure, the spatial low interception of a radio detector is defined by beam entropy. In this paper, the power peak point and drop point are set in a relatively close range (Δr), ensuring the rapid attenuation of beam amplitude over short distances. Consequently, the design principle of the FDA-MIMO low interception point beam based on the array frequency offset setting formula is obtained, and the optimal beam convergence is realized. Simulation results show that the half-power beam widths of FDA-MIMO point-like beams are 1 m in the distance dimension and 9 degrees in the beamwidth dimension, with a beam entropy of 11. Compared with other classical frequency offset setting methods, the proposed method demonstrates significantly superior beam performance, particularly in terms of low intercept characteristics. The design principle proposed in this paper provides theoretical support for the low intercept beam design of the FDA-MIMO radio detector, thereby reducing the probability of jammers acquiring signal parameters and enhancing both the low intercept performance and anti-jamming capabilities of the radio detector.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040421","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The technology of anti-informational interference is a research hotspot in radio detectors. According to the workflow of first interception and then interference for the jammer, improving low interception can fundamentally improve the anti-jamming ability of the radio detector. Airspace low interception is one of the most promising research directions. FDA-MIMO technology holds significant potential for application in this field. Therefore, this paper investigates the design principle of an FDA-MIMO radio detector with low beam entropy. From the perspectives of information acquisition and countermeasure, the spatial low interception of a radio detector is defined by beam entropy. In this paper, the power peak point and drop point are set in a relatively close range (Δr), ensuring the rapid attenuation of beam amplitude over short distances. Consequently, the design principle of the FDA-MIMO low interception point beam based on the array frequency offset setting formula is obtained, and the optimal beam convergence is realized. Simulation results show that the half-power beam widths of FDA-MIMO point-like beams are 1 m in the distance dimension and 9 degrees in the beamwidth dimension, with a beam entropy of 11. Compared with other classical frequency offset setting methods, the proposed method demonstrates significantly superior beam performance, particularly in terms of low intercept characteristics. The design principle proposed in this paper provides theoretical support for the low intercept beam design of the FDA-MIMO radio detector, thereby reducing the probability of jammers acquiring signal parameters and enhancing both the low intercept performance and anti-jamming capabilities of the radio detector.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.