{"title":"Deep-Tissue In Vivo Imaging Using Bioluminescence in a Mouse Infection Model and the Path to High Sensitivity With Near-Infrared Luminescence.","authors":"Daiki Yamaguchi, Keita Oki, Yuki Kaya, Yoshiaki Sakairi, Yuji Morita, Go Kamoshida","doi":"10.1111/1348-0421.13225","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of bacterial infections using animal models has primarily relied on the average evaluation of many individuals at specific time points. Consequently, tracking temporal changes in an infection within the same individual is challenging. InVivo imaging techniques enable the longitudinal assessment of infection in the same individual while reducing the number of animals required. Understanding the dynamics of bacterial infections over time is crucial for elucidating disease mechanisms and developing effective treatment strategies. In this review, we summarize the In Vivo imaging techniques used to detect bacterial colonization in deep tissues in animal models of bacterial infection, along with efforts to enhance their sensitivity. In particular, we introduce a recently developed In Vivo imaging system that employs near-infrared luminescence to achieve high sensitivity and versatility. Furthermore, we discuss strategies for further improving its sensitivity.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1348-0421.13225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of bacterial infections using animal models has primarily relied on the average evaluation of many individuals at specific time points. Consequently, tracking temporal changes in an infection within the same individual is challenging. InVivo imaging techniques enable the longitudinal assessment of infection in the same individual while reducing the number of animals required. Understanding the dynamics of bacterial infections over time is crucial for elucidating disease mechanisms and developing effective treatment strategies. In this review, we summarize the In Vivo imaging techniques used to detect bacterial colonization in deep tissues in animal models of bacterial infection, along with efforts to enhance their sensitivity. In particular, we introduce a recently developed In Vivo imaging system that employs near-infrared luminescence to achieve high sensitivity and versatility. Furthermore, we discuss strategies for further improving its sensitivity.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.