Hanxue Zhang, Rainer B Lanz, Jimmy Dhillon, Paul D Soloway, Bo Shui, Yi Athena Ren
{"title":"CCAAT/Enhancer-Binding Proteins α and β Regulate Ovulation and Gene Expression via Dose- and Stage-Dependent Mechanisms.","authors":"Hanxue Zhang, Rainer B Lanz, Jimmy Dhillon, Paul D Soloway, Bo Shui, Yi Athena Ren","doi":"10.1210/endocr/bqaf081","DOIUrl":null,"url":null,"abstract":"<p><p>The preovulatory luteinizing hormone (LH) surge orchestrates complex cellular and molecular events leading to ovulation. CCAAT/enhancer-binding proteins α and β (C/EBPα/β) are transcription factors acutely induced by the LH surge and crucial for ovulation and granulosa cell luteinization. However, biological processes (BPs) and their regulatory mechanisms downstream of C/EBPα/β in the preovulatory ovary are not completely understood. To address this knowledge gap, we generated Cebpa/bfl/fl;Pgr-Cre mutants and compared them with Cebpa/bfl/fl;Cyp19a1-Cre mutant female mice: Cebpa/bfl/fl;Cyp19a1-Cre mutants have undetectable levels of C/EBPα/β throughout the preovulatory stages and do not ovulate, aligning with previous reports; and Cebpa/bfl/fl;Pgr-Cre mutants present gradual depletion of C/EBPα/β during the late preovulatory stage and a reduced ovulation rate. Comparison of these two models indicates that sustained expression of C/EBPα/β throughout the preovulatory stages is necessary for successful ovulation and provides a unique opportunity to interrogate gene regulatory mechanisms by C/EBPα/β during different preovulatory time windows and the effect of dysregulating C/EBPα/β on ovulation-associated BPs. Our study revealed that C/EBPα/β regulate gene expression and distinct biological functions such as vascular remodeling via dose- and preovulatory stage-dependent mechanisms. These findings shed new light on the intricate mechanisms of gene regulation by C/EBPα/β downstream of the LH surge.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf081","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The preovulatory luteinizing hormone (LH) surge orchestrates complex cellular and molecular events leading to ovulation. CCAAT/enhancer-binding proteins α and β (C/EBPα/β) are transcription factors acutely induced by the LH surge and crucial for ovulation and granulosa cell luteinization. However, biological processes (BPs) and their regulatory mechanisms downstream of C/EBPα/β in the preovulatory ovary are not completely understood. To address this knowledge gap, we generated Cebpa/bfl/fl;Pgr-Cre mutants and compared them with Cebpa/bfl/fl;Cyp19a1-Cre mutant female mice: Cebpa/bfl/fl;Cyp19a1-Cre mutants have undetectable levels of C/EBPα/β throughout the preovulatory stages and do not ovulate, aligning with previous reports; and Cebpa/bfl/fl;Pgr-Cre mutants present gradual depletion of C/EBPα/β during the late preovulatory stage and a reduced ovulation rate. Comparison of these two models indicates that sustained expression of C/EBPα/β throughout the preovulatory stages is necessary for successful ovulation and provides a unique opportunity to interrogate gene regulatory mechanisms by C/EBPα/β during different preovulatory time windows and the effect of dysregulating C/EBPα/β on ovulation-associated BPs. Our study revealed that C/EBPα/β regulate gene expression and distinct biological functions such as vascular remodeling via dose- and preovulatory stage-dependent mechanisms. These findings shed new light on the intricate mechanisms of gene regulation by C/EBPα/β downstream of the LH surge.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.