Ana Laura Marsico, Stephanya C da Silva-Tomaeli, Pamella S B Marques, Omar Feres, Luiza S Lopes, Lourenco Sbragia
{"title":"Hyperbaric oxygen therapy alleviates intestinal and brain damage in experimental necrotizing enterocolitis.","authors":"Ana Laura Marsico, Stephanya C da Silva-Tomaeli, Pamella S B Marques, Omar Feres, Luiza S Lopes, Lourenco Sbragia","doi":"10.4103/mgr.MEDGASRES-D-24-00108","DOIUrl":null,"url":null,"abstract":"<p><p>Necrotizing enterocolitis is the most common gastrointestinal emergency in newborns. Its etiology involves bacterial colonization, enteral formula feeding, and hypoxic-ischemic injury. The pathology of necrotizing enterocolitis is characterized by coagulation necrosis and bacterial overgrowth, with limited preventative methods available. In addition to affecting the intestine, this disease has long-term neurological consequences for survivors. Hyperbaric oxygen therapy, a well-established treatment for soft tissue infections and injuries caused by hypoperfusion, may serve as an alternative approach for necrotizing enterocolitis. In this study, a necrotizing enterocolitis model was developed in newborn Sprague-Dawley rat pups through the administration of a hyperosmolar formula, combined with exposure to hypothermia and hypoxia. The rat pups received hyperbaric oxygen therapy sessions at 3 absolute atmospheres for 2 hours each, which were administered over 1 or 2 days. The results demonstrated that hyperbaric oxygen therapy significantly reduced mortality in rats with necrotizing enterocolitis and preserved the number of brain cells in the hippocampus. Additionally, hyperbaric oxygen therapy increased the expression of nitric oxide synthase, intestinal fatty acid-binding protein, and superoxide dismutase 3 in the intestine, and elevated superoxide dismutase 3 levels in the hippocampus. These findings suggest that hyperbaric oxygen therapy not only reduces mortality but also mitigates the severity of intestinal and brain lesions in experimental necrotizing enterocolitis, preserving intestinal cell integrity and enhancing antioxidant mechanisms.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 4","pages":"471-477"},"PeriodicalIF":3.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Necrotizing enterocolitis is the most common gastrointestinal emergency in newborns. Its etiology involves bacterial colonization, enteral formula feeding, and hypoxic-ischemic injury. The pathology of necrotizing enterocolitis is characterized by coagulation necrosis and bacterial overgrowth, with limited preventative methods available. In addition to affecting the intestine, this disease has long-term neurological consequences for survivors. Hyperbaric oxygen therapy, a well-established treatment for soft tissue infections and injuries caused by hypoperfusion, may serve as an alternative approach for necrotizing enterocolitis. In this study, a necrotizing enterocolitis model was developed in newborn Sprague-Dawley rat pups through the administration of a hyperosmolar formula, combined with exposure to hypothermia and hypoxia. The rat pups received hyperbaric oxygen therapy sessions at 3 absolute atmospheres for 2 hours each, which were administered over 1 or 2 days. The results demonstrated that hyperbaric oxygen therapy significantly reduced mortality in rats with necrotizing enterocolitis and preserved the number of brain cells in the hippocampus. Additionally, hyperbaric oxygen therapy increased the expression of nitric oxide synthase, intestinal fatty acid-binding protein, and superoxide dismutase 3 in the intestine, and elevated superoxide dismutase 3 levels in the hippocampus. These findings suggest that hyperbaric oxygen therapy not only reduces mortality but also mitigates the severity of intestinal and brain lesions in experimental necrotizing enterocolitis, preserving intestinal cell integrity and enhancing antioxidant mechanisms.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.