{"title":"Association Between Alpha-1-Acid Glycoprotein and Non-Alcoholic Fatty Liver Disease and Liver Fibrosis in Adult Women.","authors":"Yansong Fu, Siyi Zhang, Xin Zeng, Hong Qin","doi":"10.3390/metabo15040280","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Alpha-1-acid glycoprotein (AGP) is a glycoprotein synthesized mainly by the liver. Nonalcoholic fatty liver disease (NAFLD) and liver fibrosis (LF) are associated with metabolic disorders. The aim of this study was to examine the potential correlation between AGP and both NAFLD and LF. <b>Methods:</b> The data were derived from the 2017-2023 National Health and Nutrition Examination Survey (NHANES). The linear association between AGP and NAFLD and LF was examined by multivariate logistic regression models. Non-linear relationships were described by fitting smoothed curves and threshold effect analysis. Subgroup analysis was also performed to assess potential regulatory factors. <b>Results:</b> The study included 2270 females. AGP was found to be significantly and positively associated with NAFLD [OR = 12.00, 95% CI (6.73, 21.39), <i>p</i> < 0.001] and LF [OR = 2.20, 95% CI (1.07, 4.50), <i>p</i> = 0.042]. Furthermore, the association between AGP and NAFLD was significantly different in the diabetic subgroup (<i>p</i> < 0.05 for interaction). Additionally, we found an inverted U-shaped relationship between AGP and controlled attenuation parameter (CAP), with an inflection point at 1.20 g/L. <b>Conclusions:</b> We found a significant positive correlation between AGP and both NAFLD and LF, and there was an inverted U-shaped relationship between AGP and CAP.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15040280","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Alpha-1-acid glycoprotein (AGP) is a glycoprotein synthesized mainly by the liver. Nonalcoholic fatty liver disease (NAFLD) and liver fibrosis (LF) are associated with metabolic disorders. The aim of this study was to examine the potential correlation between AGP and both NAFLD and LF. Methods: The data were derived from the 2017-2023 National Health and Nutrition Examination Survey (NHANES). The linear association between AGP and NAFLD and LF was examined by multivariate logistic regression models. Non-linear relationships were described by fitting smoothed curves and threshold effect analysis. Subgroup analysis was also performed to assess potential regulatory factors. Results: The study included 2270 females. AGP was found to be significantly and positively associated with NAFLD [OR = 12.00, 95% CI (6.73, 21.39), p < 0.001] and LF [OR = 2.20, 95% CI (1.07, 4.50), p = 0.042]. Furthermore, the association between AGP and NAFLD was significantly different in the diabetic subgroup (p < 0.05 for interaction). Additionally, we found an inverted U-shaped relationship between AGP and controlled attenuation parameter (CAP), with an inflection point at 1.20 g/L. Conclusions: We found a significant positive correlation between AGP and both NAFLD and LF, and there was an inverted U-shaped relationship between AGP and CAP.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.