State of the Art of Bioengineering Approaches in Beta-Cell Replacement.

IF 2.4 Q2 SURGERY
Current Transplantation Reports Pub Date : 2025-01-01 Epub Date: 2025-05-06 DOI:10.1007/s40472-025-00470-y
Jake Miller, Quentin Perrier, Arunkumar Rengaraj, Joshua Bowlby, Lori Byers, Emma Peveri, Wonwoo Jeong, Thomas Ritchey, Alberto Maria Gambelli, Arianna Rossi, Riccardo Calafiore, Alice Tomei, Giuseppe Orlando, Amish Asthana
{"title":"State of the Art of Bioengineering Approaches in Beta-Cell Replacement.","authors":"Jake Miller, Quentin Perrier, Arunkumar Rengaraj, Joshua Bowlby, Lori Byers, Emma Peveri, Wonwoo Jeong, Thomas Ritchey, Alberto Maria Gambelli, Arianna Rossi, Riccardo Calafiore, Alice Tomei, Giuseppe Orlando, Amish Asthana","doi":"10.1007/s40472-025-00470-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of the review: </strong>Despite recent advancements in technology for the treatment of type 1 diabetes (T1D), exogenous insulin delivery through automated devices remains the gold standard for treatment. This review will explore progress made in pancreatic islet bioengineering within the field of beta-cell replacement for T1D treatment.</p><p><strong>Recent findings: </strong>First, we will focus on the use of decellularized extracellular matrices (dECM) as a platform for pancreatic organoid development. These matrices preserve microarchitecture and essential biochemical signals for cell differentiation, offering a promising alternative to synthetic matrices. Second, advancements in 3D bioprinting for creating complex organ structures like pancreatic islets will be discussed. This technology allows for increased precision and customization of cellular models, crucial for replicating native pancreatic islet functionality. Finally, this review will explore the use of stem cell-derived organoids to generate insulin-producing islet-like cells. While these organoids face challenges such as functional immaturity and poor vascularization, they represent a significant advancement for disease modeling, drug screening, and autologous islet transplantation.</p><p><strong>Summary: </strong>These innovative approaches promise to revolutionize T1D treatment by overcoming the limitations of traditional therapies based on human pancreatic islets.</p>","PeriodicalId":36387,"journal":{"name":"Current Transplantation Reports","volume":"12 1","pages":"17"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055624/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Transplantation Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40472-025-00470-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of the review: Despite recent advancements in technology for the treatment of type 1 diabetes (T1D), exogenous insulin delivery through automated devices remains the gold standard for treatment. This review will explore progress made in pancreatic islet bioengineering within the field of beta-cell replacement for T1D treatment.

Recent findings: First, we will focus on the use of decellularized extracellular matrices (dECM) as a platform for pancreatic organoid development. These matrices preserve microarchitecture and essential biochemical signals for cell differentiation, offering a promising alternative to synthetic matrices. Second, advancements in 3D bioprinting for creating complex organ structures like pancreatic islets will be discussed. This technology allows for increased precision and customization of cellular models, crucial for replicating native pancreatic islet functionality. Finally, this review will explore the use of stem cell-derived organoids to generate insulin-producing islet-like cells. While these organoids face challenges such as functional immaturity and poor vascularization, they represent a significant advancement for disease modeling, drug screening, and autologous islet transplantation.

Summary: These innovative approaches promise to revolutionize T1D treatment by overcoming the limitations of traditional therapies based on human pancreatic islets.

生物工程方法在β细胞替代中的应用现状。
综述的目的:尽管最近1型糖尿病(T1D)的治疗技术取得了进展,但通过自动化装置给药外源性胰岛素仍然是治疗的金标准。本文将探讨胰岛生物工程在β细胞替代治疗T1D领域的进展。最近的发现:首先,我们将重点关注使用脱细胞细胞外基质(dECM)作为胰腺类器官发育的平台。这些基质保留了细胞分化的微结构和必要的生化信号,为合成基质提供了一个有希望的替代方案。其次,将讨论3D生物打印在创建复杂器官结构(如胰岛)方面的进展。该技术允许提高细胞模型的精度和定制,这对于复制天然胰岛功能至关重要。最后,本综述将探讨利用干细胞衍生的类器官来产生产生胰岛素的胰岛样细胞。虽然这些类器官面临着功能不成熟和血管化不良等挑战,但它们在疾病建模、药物筛选和自体胰岛移植方面取得了重大进展。总结:这些创新的方法有望通过克服基于人类胰岛的传统疗法的局限性,彻底改变T1D治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
4.80%
发文量
34
期刊介绍: Under the guidance of Dr. Dorry Segev, from Johns Hopkins, Current Transplantation Reports will provide an in-depth review of topics covering kidney, liver, and pancreatic transplantation in addition to immunology and composite allografts.We accomplish this aim by inviting international authorities to contribute review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists.  By providing clear, insightful balanced contributions, the journal intends to serve those involved in the field of transplantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信