Exploring the evolutionary adaptations of the unique seahorse tail's muscle architecture through in silico modelling and robotic prototyping.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-05-01 Epub Date: 2025-05-07 DOI:10.1098/rsif.2024.0876
Dries Marzougui, Riddhi Das, Barbara Mazzolai, Dominique Adriaens, Francis Wyffels
{"title":"Exploring the evolutionary adaptations of the unique seahorse tail's muscle architecture through <i>in silico</i> modelling and robotic prototyping.","authors":"Dries Marzougui, Riddhi Das, Barbara Mazzolai, Dominique Adriaens, Francis Wyffels","doi":"10.1098/rsif.2024.0876","DOIUrl":null,"url":null,"abstract":"<p><p>Seahorses possess a unique tail muscle architecture that enables efficient grasping and anchoring onto objects. This prehensile ability is crucial for their survival, as it allows them to resist currents, cling to mates during reproduction and remain camouflaged to avoid predators. Unlike in any other fish, the muscles of the seahorse tail form long, parallel sheets that can span up to 11 vertebral segments. This study investigates how this distinctive muscle arrangement influences the mechanics of prehension. Through <i>in silico</i> simulations validated by a three-dimensional-printed prototype, we reveal the complementary roles of these elongated muscles alongside shorter, intersegmental muscles. Furthermore, we show that muscles spanning more segments allow greater contractile forces and provide more efficient force-to-torque transmissions. Our findings confirm that the elongated muscle-tendon organization in the seahorse tail provides a functional advantage for grasping, offering insights into the evolutionary adaptations of this unique tail structure.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 226","pages":"20240876"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0876","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seahorses possess a unique tail muscle architecture that enables efficient grasping and anchoring onto objects. This prehensile ability is crucial for their survival, as it allows them to resist currents, cling to mates during reproduction and remain camouflaged to avoid predators. Unlike in any other fish, the muscles of the seahorse tail form long, parallel sheets that can span up to 11 vertebral segments. This study investigates how this distinctive muscle arrangement influences the mechanics of prehension. Through in silico simulations validated by a three-dimensional-printed prototype, we reveal the complementary roles of these elongated muscles alongside shorter, intersegmental muscles. Furthermore, we show that muscles spanning more segments allow greater contractile forces and provide more efficient force-to-torque transmissions. Our findings confirm that the elongated muscle-tendon organization in the seahorse tail provides a functional advantage for grasping, offering insights into the evolutionary adaptations of this unique tail structure.

通过计算机建模和机器人原型,探索独特海马尾巴肌肉结构的进化适应性。
海马拥有独特的尾部肌肉结构,能够有效地抓住和固定在物体上。这种抓握能力对它们的生存至关重要,因为它使它们能够抵抗水流,在繁殖过程中紧紧抓住配偶,并保持伪装以躲避捕食者。与其他鱼类不同的是,海马尾巴的肌肉形成长长的平行片状,可以跨越11个椎节。这项研究调查了这种独特的肌肉结构如何影响抓握的机制。通过三维打印原型验证的硅模拟,我们揭示了这些细长肌肉与较短的节间肌肉的互补作用。此外,我们表明跨越更多节段的肌肉可以产生更大的收缩力,并提供更有效的力-扭矩传输。我们的研究结果证实,海马尾巴上细长的肌肉肌腱组织为抓取提供了功能优势,为这种独特的尾巴结构的进化适应提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信