{"title":"Jackfruit seed biochar-apatite amendments: investigating changes in lead and zinc's fractionation in the multi-metal-contaminated soil.","authors":"Viet Cao, Quy Hung Trieu, Truong Xuan Vuong","doi":"10.1080/15226514.2025.2500640","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-metal contamination in soil presents major environmental and agricultural challenges globally, impacting the feasibility of phytoremediation. This study investigated the efficacy of jackfruit seed-derived biochar (JSB) produced at 300 °C (JSB300) and 600 °C (JSB600), combined with apatite, to mitigate potentially toxic elements (PTEs), thus influencing bioavailability, in soils heavily contaminated with lead (Pb) and zinc (Zn). The primary objective was to determine how these amendments altered the chemical fractions of Pb and Zn using Tessier's sequential extraction procedure. Soil samples with initial concentrations of 3052.5 ± 15.6 mg kg<sup>-1</sup> Pb and 1531.0 ± 20.2 mg kg<sup>-1</sup> Zn were treated with biochar and apatite at 5%, 10%, 2.5:2.5%, and 5:5% (w/w). Results revealed that JSB600 and JSB300 at a 10% ratio, achieved the most significant reduction in exchangeable Pb and Zn fractions, decreasing them by up to 49.3 and 48.6%, respectively, within one month. This substantial decrease in readily available metal fractions, alongside concurrent increases in soil pH (+22.6%), organic carbon (+290.3%), and electrical conductivity (+249.0%), suggests that jackfruit seed biochar and apatite can significantly improve soil conditions for phytostabilization, by reducing metal bioavailability, or potentially for phytoextraction by influencing specific metal chemical fractions, in multi-metal-contaminated environments, enhancing soil conditions for remediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-24"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2500640","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-metal contamination in soil presents major environmental and agricultural challenges globally, impacting the feasibility of phytoremediation. This study investigated the efficacy of jackfruit seed-derived biochar (JSB) produced at 300 °C (JSB300) and 600 °C (JSB600), combined with apatite, to mitigate potentially toxic elements (PTEs), thus influencing bioavailability, in soils heavily contaminated with lead (Pb) and zinc (Zn). The primary objective was to determine how these amendments altered the chemical fractions of Pb and Zn using Tessier's sequential extraction procedure. Soil samples with initial concentrations of 3052.5 ± 15.6 mg kg-1 Pb and 1531.0 ± 20.2 mg kg-1 Zn were treated with biochar and apatite at 5%, 10%, 2.5:2.5%, and 5:5% (w/w). Results revealed that JSB600 and JSB300 at a 10% ratio, achieved the most significant reduction in exchangeable Pb and Zn fractions, decreasing them by up to 49.3 and 48.6%, respectively, within one month. This substantial decrease in readily available metal fractions, alongside concurrent increases in soil pH (+22.6%), organic carbon (+290.3%), and electrical conductivity (+249.0%), suggests that jackfruit seed biochar and apatite can significantly improve soil conditions for phytostabilization, by reducing metal bioavailability, or potentially for phytoextraction by influencing specific metal chemical fractions, in multi-metal-contaminated environments, enhancing soil conditions for remediation.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.