Jackfruit seed biochar-apatite amendments: investigating changes in lead and zinc's fractionation in the multi-metal-contaminated soil.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Viet Cao, Quy Hung Trieu, Truong Xuan Vuong
{"title":"Jackfruit seed biochar-apatite amendments: investigating changes in lead and zinc's fractionation in the multi-metal-contaminated soil.","authors":"Viet Cao, Quy Hung Trieu, Truong Xuan Vuong","doi":"10.1080/15226514.2025.2500640","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-metal contamination in soil presents major environmental and agricultural challenges globally, impacting the feasibility of phytoremediation. This study investigated the efficacy of jackfruit seed-derived biochar (JSB) produced at 300 °C (JSB300) and 600 °C (JSB600), combined with apatite, to mitigate potentially toxic elements (PTEs), thus influencing bioavailability, in soils heavily contaminated with lead (Pb) and zinc (Zn). The primary objective was to determine how these amendments altered the chemical fractions of Pb and Zn using Tessier's sequential extraction procedure. Soil samples with initial concentrations of 3052.5 ± 15.6 mg kg<sup>-1</sup> Pb and 1531.0 ± 20.2 mg kg<sup>-1</sup> Zn were treated with biochar and apatite at 5%, 10%, 2.5:2.5%, and 5:5% (w/w). Results revealed that JSB600 and JSB300 at a 10% ratio, achieved the most significant reduction in exchangeable Pb and Zn fractions, decreasing them by up to 49.3 and 48.6%, respectively, within one month. This substantial decrease in readily available metal fractions, alongside concurrent increases in soil pH (+22.6%), organic carbon (+290.3%), and electrical conductivity (+249.0%), suggests that jackfruit seed biochar and apatite can significantly improve soil conditions for phytostabilization, by reducing metal bioavailability, or potentially for phytoextraction by influencing specific metal chemical fractions, in multi-metal-contaminated environments, enhancing soil conditions for remediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-24"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2500640","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-metal contamination in soil presents major environmental and agricultural challenges globally, impacting the feasibility of phytoremediation. This study investigated the efficacy of jackfruit seed-derived biochar (JSB) produced at 300 °C (JSB300) and 600 °C (JSB600), combined with apatite, to mitigate potentially toxic elements (PTEs), thus influencing bioavailability, in soils heavily contaminated with lead (Pb) and zinc (Zn). The primary objective was to determine how these amendments altered the chemical fractions of Pb and Zn using Tessier's sequential extraction procedure. Soil samples with initial concentrations of 3052.5 ± 15.6 mg kg-1 Pb and 1531.0 ± 20.2 mg kg-1 Zn were treated with biochar and apatite at 5%, 10%, 2.5:2.5%, and 5:5% (w/w). Results revealed that JSB600 and JSB300 at a 10% ratio, achieved the most significant reduction in exchangeable Pb and Zn fractions, decreasing them by up to 49.3 and 48.6%, respectively, within one month. This substantial decrease in readily available metal fractions, alongside concurrent increases in soil pH (+22.6%), organic carbon (+290.3%), and electrical conductivity (+249.0%), suggests that jackfruit seed biochar and apatite can significantly improve soil conditions for phytostabilization, by reducing metal bioavailability, or potentially for phytoextraction by influencing specific metal chemical fractions, in multi-metal-contaminated environments, enhancing soil conditions for remediation.

菠萝蜜种子生物炭-磷灰石改进剂:研究多金属污染土壤中铅和锌分异的变化。
土壤多金属污染是全球环境和农业面临的重大挑战,影响了植物修复的可行性。本研究研究了在300°C (JSB300)和600°C (JSB600)下生产的菠萝蜜种子衍生生物炭(JSB)与磷灰石结合,在铅(Pb)和锌(Zn)严重污染的土壤中减轻潜在有毒元素(pte)的效果,从而影响生物利用度。主要目的是确定这些修正如何改变铅和锌的化学组分使用泰西尔的顺序提取程序。初始Pb浓度为3052.5±15.6 mg kg-1、Zn浓度为1531.0±20.2 mg kg-1的土壤样品分别用生物炭和磷灰石按5%、10%、2.5:2.5%和5:5% (w/w)处理。结果表明,JSB600和JSB300在10%的添加比例下,可交换性Pb和Zn在1个月内分别降低49.3%和48.6%,降幅最大。易有效金属组分的大幅减少,以及土壤pH值(+22.6%)、有机碳(+290.3%)和电导率(+249.0%)的同时增加,表明菠萝蜜种子生物炭和磷灰石可以通过降低金属生物有效性,或通过影响特定金属化学组分,在多金属污染的环境中显著改善植物稳定的土壤条件,从而增强土壤修复条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信