{"title":"Effects of seabuckthorn pomace on rumen development, intramuscular fatty acids and antioxidant capacity in weaned lambs.","authors":"Xiaogao Diao, Xuanzi Zhang, Xiaoyan Hao, Chuntang Mu, Jianxin Zhang","doi":"10.3389/fvets.2025.1560976","DOIUrl":null,"url":null,"abstract":"<p><p>Sea buckthorn pomace (SBP), a by-product derived from sea buckthorn fruit, is rich in nutrients and contains multiple pharmacologically active compounds. Consequently, SBP has the potential to serve as an alternative feed source for ruminants. This study aimed to evaluate the effects of SBP supplementation on organ weight, rumen development, intramuscular fatty acid composition, and antioxidant capacity in weaned lambs. Forty weaned Duper × Small-tailed Han lambs were randomly assigned to one of four dietary treatments in a completely randomized design. The experimental diets included 0% SBP (control), 8% SBP, 16% SBP, and 24% SBP, which were administered over an 80-day period. The results revealed that organ weight increased linearly with SBP supplementation, with the 16% SBP group demonstrating the highest weight gain (<i>p</i> < 0.05). Rumen and small intestine deposition exhibited a quadratic response, while omental fat accumulation was significantly greater in the SBP-supplemented groups compared to the control (<i>p</i> = 0.01). Additionally, rumen papilla length, width, and keratin layer thickness were positively influenced by SBP supplementation (<i>p</i> = 0.01). In rumen fluid, acetate, propionate, total volatile fatty acids, and acetate/propionate ratio showed a linear increase with SBP supplementation, whereas rumen pH displayed an inverse trend (<i>p</i> < 0.05). Marbling in longissimus dorsi improved in the SBP group along with enhanced meat quality parameters such as saturated fatty acid (TSFA), total monounsaturated fatty acid (TMUFA), and total polyunsaturated fatty acids (TPUFA), indicating that meat from lambs fed with 16% SBP was more tender and of better quality (<i>p</i> < 0.05). Furthermore, SBP also increased the antioxidant capacity of muscle tissue (<i>p</i> < 0.05). The above results indicate that adding SBP at a level of 16% in weaned lambs' diets can enhance organ weight, promote ruminal development, improve meat quality, and provide antioxidant benefits. SBP can be included at up to 24% in weaned lambs' diets without negative effects.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"12 ","pages":"1560976"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2025.1560976","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sea buckthorn pomace (SBP), a by-product derived from sea buckthorn fruit, is rich in nutrients and contains multiple pharmacologically active compounds. Consequently, SBP has the potential to serve as an alternative feed source for ruminants. This study aimed to evaluate the effects of SBP supplementation on organ weight, rumen development, intramuscular fatty acid composition, and antioxidant capacity in weaned lambs. Forty weaned Duper × Small-tailed Han lambs were randomly assigned to one of four dietary treatments in a completely randomized design. The experimental diets included 0% SBP (control), 8% SBP, 16% SBP, and 24% SBP, which were administered over an 80-day period. The results revealed that organ weight increased linearly with SBP supplementation, with the 16% SBP group demonstrating the highest weight gain (p < 0.05). Rumen and small intestine deposition exhibited a quadratic response, while omental fat accumulation was significantly greater in the SBP-supplemented groups compared to the control (p = 0.01). Additionally, rumen papilla length, width, and keratin layer thickness were positively influenced by SBP supplementation (p = 0.01). In rumen fluid, acetate, propionate, total volatile fatty acids, and acetate/propionate ratio showed a linear increase with SBP supplementation, whereas rumen pH displayed an inverse trend (p < 0.05). Marbling in longissimus dorsi improved in the SBP group along with enhanced meat quality parameters such as saturated fatty acid (TSFA), total monounsaturated fatty acid (TMUFA), and total polyunsaturated fatty acids (TPUFA), indicating that meat from lambs fed with 16% SBP was more tender and of better quality (p < 0.05). Furthermore, SBP also increased the antioxidant capacity of muscle tissue (p < 0.05). The above results indicate that adding SBP at a level of 16% in weaned lambs' diets can enhance organ weight, promote ruminal development, improve meat quality, and provide antioxidant benefits. SBP can be included at up to 24% in weaned lambs' diets without negative effects.
期刊介绍:
Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy.
Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field.
Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.