Using Deep Reinforcement Learning to Decide Test Length.

IF 2.1 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
James Zoucha, Igor Himelfarb, Nai-En Tang
{"title":"Using Deep Reinforcement Learning to Decide Test Length.","authors":"James Zoucha, Igor Himelfarb, Nai-En Tang","doi":"10.1177/00131644251332972","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the application of deep reinforcement learning (DRL) as an innovative approach to optimize test length. The primary focus was to evaluate whether the current length of the National Board of Chiropractic Examiners Part I Exam is justified. By modeling the problem as a combinatorial optimization task within a Markov Decision Process framework, an algorithm capable of constructing test forms from a finite set of items while adhering to critical structural constraints, such as content representation and item difficulty distribution, was used. The findings reveal that although the DRL algorithm was successful in identifying shorter test forms that maintained comparable ability estimation accuracy, the existing test length of 240 items remains advisable as we found shorter test forms did not maintain structural constraints. Furthermore, the study highlighted the inherent adaptability of DRL to continuously learn about a test-taker's latent abilities and dynamically adjust to their response patterns, making it well-suited for personalized testing environments. This dynamic capability supports real-time decision-making in item selection, improving both efficiency and precision in ability estimation. Future research is encouraged to focus on expanding the item bank and leveraging advanced computational resources to enhance the algorithm's search capacity for shorter, structurally compliant test forms.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644251332972"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644251332972","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the application of deep reinforcement learning (DRL) as an innovative approach to optimize test length. The primary focus was to evaluate whether the current length of the National Board of Chiropractic Examiners Part I Exam is justified. By modeling the problem as a combinatorial optimization task within a Markov Decision Process framework, an algorithm capable of constructing test forms from a finite set of items while adhering to critical structural constraints, such as content representation and item difficulty distribution, was used. The findings reveal that although the DRL algorithm was successful in identifying shorter test forms that maintained comparable ability estimation accuracy, the existing test length of 240 items remains advisable as we found shorter test forms did not maintain structural constraints. Furthermore, the study highlighted the inherent adaptability of DRL to continuously learn about a test-taker's latent abilities and dynamically adjust to their response patterns, making it well-suited for personalized testing environments. This dynamic capability supports real-time decision-making in item selection, improving both efficiency and precision in ability estimation. Future research is encouraged to focus on expanding the item bank and leveraging advanced computational resources to enhance the algorithm's search capacity for shorter, structurally compliant test forms.

使用深度强化学习来决定测试长度。
本研究探索了深度强化学习(DRL)作为优化测试长度的创新方法的应用。主要的焦点是评估目前全国脊医考试委员会第一部分考试的长度是否合理。通过将问题建模为马尔可夫决策过程框架中的组合优化任务,使用了一种算法,该算法能够从有限的一组项目中构建测试表单,同时遵守关键的结构约束,如内容表示和项目难度分布。研究结果表明,尽管DRL算法成功地识别了较短的测试表格,并保持了相当的能力估计准确性,但现有的240个项目的测试长度仍然是可取的,因为我们发现较短的测试表格没有保持结构约束。此外,该研究还强调了DRL固有的适应性,即不断了解考生的潜在能力并动态调整他们的反应模式,使其非常适合个性化的测试环境。这种动态能力支持项目选择的实时决策,提高了能力估计的效率和精度。鼓励未来的研究将重点放在扩展题库和利用先进的计算资源来增强算法对较短的、结构兼容的测试表单的搜索能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信