Xiaojuan Zhu, Hao Wang, Bo Yu, Lingling Jin, Chao Qu, Hongyan Li, Hong Yang
{"title":"Coumarins attenuate intestinal motility by inhibiting TMEM16A.","authors":"Xiaojuan Zhu, Hao Wang, Bo Yu, Lingling Jin, Chao Qu, Hongyan Li, Hong Yang","doi":"10.1691/ph.2025.4544","DOIUrl":null,"url":null,"abstract":"<p><p>Transmembrane 16A (TMEM16A) is highly expressed in interstitial cells of Cajal (ICC) and participates in ICC-mediated rhythmic contractile activity of intestinal smooth muscle. TMEM16A is also expressed in epithelium of intestine with a minor contributor to transepithelial fluid secretion, while other unidentified Ca<sup>2+</sup> -activated Cl - channels (unCaCCs) are mainly responsible for this physiological process. TMEM16A/CaCCs dysfunction can lead to disorders of intestinal motility and transepithelial fluid secretion. TMEM16A/CaCCs regulators are important tools to identify unCaCCs and study the physiopathological functions related to TMEM16A/CaCCs. In the present study, coumarins were identified as TMEM16A inhibitors in a concentration- and time-dependent manner in TMEM16A-expressed Fischer rat thyroid (FRT) epithelial cells. Coumarins attenuated intestinal motility by inhibiting TMEM16A <i>in vivo</i> and <i>ex vivo</i>. Coumarins inhibited CaCCs-mediated Cl<sup>-</sup> currents induced by ATP in T84 and HT-29 cells or by carbachol (CCh) in mouse colonic mucosa with reduction of ATP-induced increase of cytoplasmic Ca<sup>2+</sup> concentration in HT-29 cells. Coumarins inhibited basolateral Ca<sup>2+</sup> -activated K<sup>+</sup> channels without affecting Na + /K + -ATPase activity in mouse colonic mucosa. Coumarins did not show inhibition of cystic fibrosis transmembrane conductance regulator (CFTR), but mild activation of CFTR-mediated Cl - currents under the low concentration forskolin (FSK) in CFTR-expressed FRT cells, while coumarins did not activate CFTR-mediated Cl- currents in mouse colonic mucosa. This study was the first to demonstrate that coumarins attenuate intestinal motility by inhibiting TMEM16A, which may provide a strategy for clinical drug intervention aimed at reducing secretory diarrhea.</p>","PeriodicalId":20145,"journal":{"name":"Pharmazie","volume":"80 1","pages":"10-16"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1691/ph.2025.4544","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transmembrane 16A (TMEM16A) is highly expressed in interstitial cells of Cajal (ICC) and participates in ICC-mediated rhythmic contractile activity of intestinal smooth muscle. TMEM16A is also expressed in epithelium of intestine with a minor contributor to transepithelial fluid secretion, while other unidentified Ca2+ -activated Cl - channels (unCaCCs) are mainly responsible for this physiological process. TMEM16A/CaCCs dysfunction can lead to disorders of intestinal motility and transepithelial fluid secretion. TMEM16A/CaCCs regulators are important tools to identify unCaCCs and study the physiopathological functions related to TMEM16A/CaCCs. In the present study, coumarins were identified as TMEM16A inhibitors in a concentration- and time-dependent manner in TMEM16A-expressed Fischer rat thyroid (FRT) epithelial cells. Coumarins attenuated intestinal motility by inhibiting TMEM16A in vivo and ex vivo. Coumarins inhibited CaCCs-mediated Cl- currents induced by ATP in T84 and HT-29 cells or by carbachol (CCh) in mouse colonic mucosa with reduction of ATP-induced increase of cytoplasmic Ca2+ concentration in HT-29 cells. Coumarins inhibited basolateral Ca2+ -activated K+ channels without affecting Na + /K + -ATPase activity in mouse colonic mucosa. Coumarins did not show inhibition of cystic fibrosis transmembrane conductance regulator (CFTR), but mild activation of CFTR-mediated Cl - currents under the low concentration forskolin (FSK) in CFTR-expressed FRT cells, while coumarins did not activate CFTR-mediated Cl- currents in mouse colonic mucosa. This study was the first to demonstrate that coumarins attenuate intestinal motility by inhibiting TMEM16A, which may provide a strategy for clinical drug intervention aimed at reducing secretory diarrhea.
期刊介绍:
The journal DiePharmazie publishs reviews, experimental studies, letters to the editor, as well as book reviews.
The following fields of pharmacy are covered:
Pharmaceutical and medicinal chemistry;
Pharmaceutical analysis and drug control;
Pharmaceutical technolgy;
Biopharmacy (biopharmaceutics, pharmacokinetics, biotransformation);
Experimental and clinical pharmacology;
Pharmaceutical biology (pharmacognosy);
Clinical pharmacy;
History of pharmacy.