β-Cyclodextrin-functionalized nanocarriers for bromocriptine: development, evaluation and histopathological studies.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Journal of microencapsulation Pub Date : 2025-06-01 Epub Date: 2025-04-10 DOI:10.1080/02652048.2025.2487034
Muhammad Ahsan Waqar, Iqra Noor Khan, Shabab Zahra, Farwa Shaheen, Saba Noureen, Shakeel Ahmad, Muhammad Irfan Siddique, Muhammad Nadeem Alvi
{"title":"β-Cyclodextrin-functionalized nanocarriers for bromocriptine: development, evaluation and histopathological studies.","authors":"Muhammad Ahsan Waqar, Iqra Noor Khan, Shabab Zahra, Farwa Shaheen, Saba Noureen, Shakeel Ahmad, Muhammad Irfan Siddique, Muhammad Nadeem Alvi","doi":"10.1080/02652048.2025.2487034","DOIUrl":null,"url":null,"abstract":"<p><p>Bromocriptine (BCM), a dopaminergic agonist used in Parkinson's disease treatment, has poor oral bioavailability due to extensive first-pass metabolism and limited gastrointestinal absorption. This study aimed to develop a β-cyclodextrin-functionalized bromocriptine nanoemulsion (oil-in-water) to enhance drug solubility, stability, and bioavailability while facilitating direct brain delivery via the intranasal route. The formulation was designed to overcome systemic metabolic barriers, improve drug permeation across the blood-brain barrier, and ensure sustained therapeutic effects with minimal systemic side effects. Nano-emulsions were prepared using high-shear homogenization. Characterization was performed using scanning electron microscopy (SEM) for morphological analysis. Globule size and zeta potential were measured using Malvern Zetasizer. Fourier Transform Infrared Spectroscopy (FTIR) was used for structural analysis, while X-ray diffraction (XRD) assessed crystallinity. Differential Scanning Calorimetry (DSC) was conducted for thermal analysis. Drug content and <i>in-vitro</i> drug release were evaluated using UV-visible spectroscopy. Stability studies were performed using centrifugation and freeze-thaw methods. Docking studies and Histopathological evaluation were also performed of the prepared formulations. Morphological studies revealed nano-sized globular particles with a mean diameter of 117.2 nm and a low polydispersity index (PDI 0.810), indicating uniformity. The nanoemulsion exhibited a zeta potential of -10.5 mV, ensuring colloidal stability. The encapsulation efficiency (EE%) of the optimized formulation (F4) was 95.36(% w/w,) with a drug load of approximately 9.5(% w/w). <i>In-vitro</i> drug release reached 85.65%, with permeation release of 78.44% and 70.13% ex-vivo. The formulation remained stable under freeze-thaw and centrifugation conditions. Cell toxicity assessments demonstrated excellent biocompatibility, with no significant cytotoxic effects observed in histopathological evaluations. This nanoemulsion presents a promising alternative to oral bromocriptine for Parkinson's treatment.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"406-420"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2487034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Bromocriptine (BCM), a dopaminergic agonist used in Parkinson's disease treatment, has poor oral bioavailability due to extensive first-pass metabolism and limited gastrointestinal absorption. This study aimed to develop a β-cyclodextrin-functionalized bromocriptine nanoemulsion (oil-in-water) to enhance drug solubility, stability, and bioavailability while facilitating direct brain delivery via the intranasal route. The formulation was designed to overcome systemic metabolic barriers, improve drug permeation across the blood-brain barrier, and ensure sustained therapeutic effects with minimal systemic side effects. Nano-emulsions were prepared using high-shear homogenization. Characterization was performed using scanning electron microscopy (SEM) for morphological analysis. Globule size and zeta potential were measured using Malvern Zetasizer. Fourier Transform Infrared Spectroscopy (FTIR) was used for structural analysis, while X-ray diffraction (XRD) assessed crystallinity. Differential Scanning Calorimetry (DSC) was conducted for thermal analysis. Drug content and in-vitro drug release were evaluated using UV-visible spectroscopy. Stability studies were performed using centrifugation and freeze-thaw methods. Docking studies and Histopathological evaluation were also performed of the prepared formulations. Morphological studies revealed nano-sized globular particles with a mean diameter of 117.2 nm and a low polydispersity index (PDI 0.810), indicating uniformity. The nanoemulsion exhibited a zeta potential of -10.5 mV, ensuring colloidal stability. The encapsulation efficiency (EE%) of the optimized formulation (F4) was 95.36(% w/w,) with a drug load of approximately 9.5(% w/w). In-vitro drug release reached 85.65%, with permeation release of 78.44% and 70.13% ex-vivo. The formulation remained stable under freeze-thaw and centrifugation conditions. Cell toxicity assessments demonstrated excellent biocompatibility, with no significant cytotoxic effects observed in histopathological evaluations. This nanoemulsion presents a promising alternative to oral bromocriptine for Parkinson's treatment.

溴隐碱β-环糊精功能化纳米载体的开发、评价和组织病理学研究。
溴隐亭(Bromocriptine, BCM)是一种用于帕金森病治疗的多巴胺能激动剂,由于其广泛的首过代谢和有限的胃肠道吸收,口服生物利用度较差。本研究旨在开发一种β-环糊精功能化的溴隐碱纳米乳(水包油),以提高药物的溶解度、稳定性和生物利用度,同时促进经鼻给药。该制剂旨在克服全身代谢障碍,改善药物通过血脑屏障的渗透,并确保持续的治疗效果和最小的全身副作用。采用高剪切均质法制备纳米乳液。利用扫描电子显微镜(SEM)进行形态学分析。用马尔文Zetasizer测定球的大小和zeta电位。傅里叶变换红外光谱(FTIR)用于结构分析,x射线衍射(XRD)用于结晶度评估。采用差示扫描量热法(DSC)进行热分析。采用紫外可见光谱法评价药物含量和体外释放度。稳定性研究采用离心和冻融方法进行。对制备的制剂进行对接研究和组织病理学评价。形态学研究显示,纳米级球形颗粒平均直径为117.2 nm,多分散性指数较低(PDI为0.810),具有均匀性。纳米乳液的zeta电位为-10.5 mV,保证了胶体的稳定性。优化后的配方(F4)包封率(EE%)为95.36(% w/w),载药量约为9.5(% w/w)。体外释药率85.65%,体外释药率78.44%,体外释药率70.13%。该制剂在冻融和离心条件下均保持稳定。细胞毒性评估显示出良好的生物相容性,在组织病理学评估中没有观察到明显的细胞毒性作用。这种纳米乳提供了一种有希望的替代口服溴隐亭治疗帕金森病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信