Neural circuits underlying divergent visuomotor strategies of zebrafish and Danionella cerebrum.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-05-19 Epub Date: 2025-05-02 DOI:10.1016/j.cub.2025.04.027
Kaitlyn E Fouke, Zichen He, Matthew D Loring, Eva A Naumann
{"title":"Neural circuits underlying divergent visuomotor strategies of zebrafish and Danionella cerebrum.","authors":"Kaitlyn E Fouke, Zichen He, Matthew D Loring, Eva A Naumann","doi":"10.1016/j.cub.2025.04.027","DOIUrl":null,"url":null,"abstract":"<p><p>Many animals respond to sensory cues with species-specific coordinated movements.<sup>1</sup><sup>,</sup><sup>2</sup> A universal visually guided behavior is the optomotor response (OMR),<sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup><sup>,</sup><sup>6</sup> which stabilizes the body by following optic flow induced by displacements in currents.<sup>7</sup> While the brain-wide OMR circuits in zebrafish (Danio rerio) have been characterized,<sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup> the homologous neural functions across teleost species with different ecological niches, such as Danionella cerebrum,<sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup> remain largely unexplored. Here, we directly compare larval zebrafish and D. cerebrum to uncover the neural mechanisms underlying the natural variation of visuomotor coordination. Closed-loop behavioral tracking during visual stimulation revealed that D. cerebrum follow optic flow by swimming continuously, punctuated with sharp directional turns, in contrast to the burst-and-glide locomotion of zebrafish.<sup>16</sup> Although D. cerebrum swim at higher average speeds, they lack the direction-dependent velocity modulation observed in zebrafish. Two-photon calcium imaging and tail tracking showed that both species exhibit direction-selective encoding in putative homologous regions, with D. cerebrum containing more monocular neurons. D. cerebrum sustain significantly longer directed swims across all stimuli than zebrafish, with zebrafish reducing tail movement duration in response to oblique, turn-inducing stimuli. While locomotion-associated neurons in D. cerebrum display more prolonged activity than zebrafish, lateralized turn-associated neural activity in the hindbrain suggests a shared neural circuit architecture that independently controls movement vigor and direction. These findings highlight the diversity in visuomotor strategies among teleost species with shared circuit motifs, establishing a framework for unraveling the neural mechanisms driving continuous and discrete locomotion.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"2457-2466.e4"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.04.027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many animals respond to sensory cues with species-specific coordinated movements.1,2 A universal visually guided behavior is the optomotor response (OMR),3,4,5,6 which stabilizes the body by following optic flow induced by displacements in currents.7 While the brain-wide OMR circuits in zebrafish (Danio rerio) have been characterized,8,9,10,11,12 the homologous neural functions across teleost species with different ecological niches, such as Danionella cerebrum,13,14,15 remain largely unexplored. Here, we directly compare larval zebrafish and D. cerebrum to uncover the neural mechanisms underlying the natural variation of visuomotor coordination. Closed-loop behavioral tracking during visual stimulation revealed that D. cerebrum follow optic flow by swimming continuously, punctuated with sharp directional turns, in contrast to the burst-and-glide locomotion of zebrafish.16 Although D. cerebrum swim at higher average speeds, they lack the direction-dependent velocity modulation observed in zebrafish. Two-photon calcium imaging and tail tracking showed that both species exhibit direction-selective encoding in putative homologous regions, with D. cerebrum containing more monocular neurons. D. cerebrum sustain significantly longer directed swims across all stimuli than zebrafish, with zebrafish reducing tail movement duration in response to oblique, turn-inducing stimuli. While locomotion-associated neurons in D. cerebrum display more prolonged activity than zebrafish, lateralized turn-associated neural activity in the hindbrain suggests a shared neural circuit architecture that independently controls movement vigor and direction. These findings highlight the diversity in visuomotor strategies among teleost species with shared circuit motifs, establishing a framework for unraveling the neural mechanisms driving continuous and discrete locomotion.

斑马鱼和danielella大脑不同视觉运动策略背后的神经回路。
许多动物对感觉线索的反应是物种特有的协调动作。一种普遍的视觉引导行为是光运动反应(OMR),3,4,5,6,它通过跟随由电流位移引起的光流来稳定身体虽然斑马鱼(Danionella cerebrum)的全脑OMR回路已经被表征,但不同生态位的硬骨鱼物种(如Danionella cerebrum,13,14,15)的同源神经功能在很大程度上仍未被探索。在此,我们直接比较了斑马鱼幼虫和d.s ocerum,以揭示视觉运动协调自然变化的神经机制。在视觉刺激过程中的闭环行为跟踪显示,d.s ocbrum通过连续游泳来跟随光流,并伴有尖锐的定向转向,这与斑马鱼的突发和滑翔运动形成对比尽管海马的平均速度更高,但它们缺乏斑马鱼中观察到的依赖方向的速度调节。双光子钙成像和尾巴跟踪显示,这两个物种在假定的同源区域都表现出方向选择性编码,其中D.大脑含有更多的单眼神经元。在所有刺激下,大脑比斑马鱼维持更长的定向游泳时间,斑马鱼减少了对倾斜、转向诱导刺激的尾巴运动持续时间。虽然海马的运动相关神经元比斑马鱼表现出更持久的活动,但后脑的侧转相关神经活动表明,它们有一个共同的神经回路结构,独立地控制着运动的活力和方向。这些发现强调了具有共享电路基元的硬骨鱼物种在视觉运动策略上的多样性,为揭示驱动连续和离散运动的神经机制建立了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信