Ang-Yu Liu, Prescott O Jeckel, Min May Wong, Diane C Bassham, Gustavo C MacIntosh
{"title":"Vacuolar phosphatases are essential for efficient nucleotide salvage in Arabidopsis.","authors":"Ang-Yu Liu, Prescott O Jeckel, Min May Wong, Diane C Bassham, Gustavo C MacIntosh","doi":"10.1093/jxb/eraf168","DOIUrl":null,"url":null,"abstract":"<p><p>The salvage pathway that recycles nucleotides from RNA is an important contributor to cellular homeostasis. In Arabidopsis, RNA salvage occurs in the vacuole, in a process started by RNS2. Defects in this pathway lead to constitutive autophagy. How nucleosides are generated from RNS2-catalyzed RNA degradation remains unclear. Using a combination of biochemistry and molecular genetics, we showed that RNS2 produces 2',3'-cAMP and 3'-AMP from poly(A) degradation but only 2',3'-cUMP from poly(U). Mutants lacking PAP26, the major vacuolar acid phosphatase (APase), displayed increased basal autophagy that was rescued by inosine treatment, mirroring rns2 phenotypes. PAP26 deficient vacuoles have lower total APase activity than WT, but nucleotide processing is not fully disrupted. Further analyses showed that VSP3 also contributes to the total vacuolar APase activity. Nucleotide metabolism in pap26 vsp3 double mutants is severely disrupted, and mutant vacuoles accumulate 3'-NMP, 5'-NMP, and surprisingly 2'-AMP. We propose that PAP26 and VSP3 are the main APases involved in vacuolar RNA salvage. In addition, our results suggest that other activities, including cyclic phosphodiesterases and possibly a 5'-NMP-producing exoribonuclease, are needed to facilitate this process in Arabidopsis, producing the metabolites that are transported to the cytoplasm to maintain nucleotide homeostasis.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf168","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The salvage pathway that recycles nucleotides from RNA is an important contributor to cellular homeostasis. In Arabidopsis, RNA salvage occurs in the vacuole, in a process started by RNS2. Defects in this pathway lead to constitutive autophagy. How nucleosides are generated from RNS2-catalyzed RNA degradation remains unclear. Using a combination of biochemistry and molecular genetics, we showed that RNS2 produces 2',3'-cAMP and 3'-AMP from poly(A) degradation but only 2',3'-cUMP from poly(U). Mutants lacking PAP26, the major vacuolar acid phosphatase (APase), displayed increased basal autophagy that was rescued by inosine treatment, mirroring rns2 phenotypes. PAP26 deficient vacuoles have lower total APase activity than WT, but nucleotide processing is not fully disrupted. Further analyses showed that VSP3 also contributes to the total vacuolar APase activity. Nucleotide metabolism in pap26 vsp3 double mutants is severely disrupted, and mutant vacuoles accumulate 3'-NMP, 5'-NMP, and surprisingly 2'-AMP. We propose that PAP26 and VSP3 are the main APases involved in vacuolar RNA salvage. In addition, our results suggest that other activities, including cyclic phosphodiesterases and possibly a 5'-NMP-producing exoribonuclease, are needed to facilitate this process in Arabidopsis, producing the metabolites that are transported to the cytoplasm to maintain nucleotide homeostasis.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.