Robert P Skelton, Daniel Buttner, Alastair J Potts
{"title":"Mixed hydraulic responses to drought in six common woody species from a dry evergreen sclerophyll forest in South Africa.","authors":"Robert P Skelton, Daniel Buttner, Alastair J Potts","doi":"10.1093/treephys/tpaf045","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the emergence of a general conceptual framework for woody tree response to drought, few studies link variation in functional traits of coexisting species to drought outcomes in diverse plant communities. We use a natural drought event to test an ecological prediction from the embolism avoidance hypothesis: that co-existing species of a single growth form (woody trees) will converge upon traits that avoid embolism during all but the most severe droughts. We evaluated hydraulic traits and drought responses of six common woody tree species from South Africa's Albany Subtropical Thicket. For each species, we measured laboratory-based xylem vulnerability and Pressure-Volume curves, and in situ minimum water potentials and four metrics of drought canopy damage during a dry period as well as a subsequent wetter period. We also quantified leaf construction and plant architecture traits, including tree height, Huber value and leaf mass per area (LMA). Species varied in the water potential associated with 50% loss of xylem function (P50), and turgor loss point, leading to between-species variation in stomatal and hydraulic safety margins. All species were shown to withstand leaf xylem water potentials more negative than -4.5 MPa before experiencing embolism. Predicted percent embolism during the dry period was associated with whole-plant drought damage but only following recovery. The LMA, modulus of elasticity, Huber value and tree height were also associated with drought damage, albeit less predictably so. Our results provide support for the embolism avoidance hypothesis and demonstrate how knowledge of species' hydraulic traits can predict canopy dieback during drought events. However, our study also reveals mixed functional responses to drought within a single major growth form (i.e., woody trees) within a community that is composed of multiple growth forms, highlighting the complexity of predicting drought outcomes in diverse communities.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf045","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the emergence of a general conceptual framework for woody tree response to drought, few studies link variation in functional traits of coexisting species to drought outcomes in diverse plant communities. We use a natural drought event to test an ecological prediction from the embolism avoidance hypothesis: that co-existing species of a single growth form (woody trees) will converge upon traits that avoid embolism during all but the most severe droughts. We evaluated hydraulic traits and drought responses of six common woody tree species from South Africa's Albany Subtropical Thicket. For each species, we measured laboratory-based xylem vulnerability and Pressure-Volume curves, and in situ minimum water potentials and four metrics of drought canopy damage during a dry period as well as a subsequent wetter period. We also quantified leaf construction and plant architecture traits, including tree height, Huber value and leaf mass per area (LMA). Species varied in the water potential associated with 50% loss of xylem function (P50), and turgor loss point, leading to between-species variation in stomatal and hydraulic safety margins. All species were shown to withstand leaf xylem water potentials more negative than -4.5 MPa before experiencing embolism. Predicted percent embolism during the dry period was associated with whole-plant drought damage but only following recovery. The LMA, modulus of elasticity, Huber value and tree height were also associated with drought damage, albeit less predictably so. Our results provide support for the embolism avoidance hypothesis and demonstrate how knowledge of species' hydraulic traits can predict canopy dieback during drought events. However, our study also reveals mixed functional responses to drought within a single major growth form (i.e., woody trees) within a community that is composed of multiple growth forms, highlighting the complexity of predicting drought outcomes in diverse communities.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.