Deciphering the heterogeneous glucosinolates composition in leaves and seeds: strategies for developing Brassica napus genotypes with low seed glucosinolates content but high leaf glucosinolates content.
Mengxin Tu, Wenxuan Guan, Antony Maodzeka, Hongyu Zhou, Zi Zhang, Tao Yan, Shuijin Hua, Lixi Jiang
{"title":"Deciphering the heterogeneous glucosinolates composition in leaves and seeds: strategies for developing Brassica napus genotypes with low seed glucosinolates content but high leaf glucosinolates content.","authors":"Mengxin Tu, Wenxuan Guan, Antony Maodzeka, Hongyu Zhou, Zi Zhang, Tao Yan, Shuijin Hua, Lixi Jiang","doi":"10.1186/s43897-025-00147-1","DOIUrl":null,"url":null,"abstract":"<p><p>Rapeseed cakes with low glucosinolates content (GC) possess high feeding value. However, the pursuit of low-GC seeds has inadvertently resulted in a reduction of GC in leaves, making plants more susceptible to stress and lowering their nutritional quality. Therefore, it is imperative to disrupt the tight association between GC in these two tissues and ultimately develop genotypes with low-GC seeds but high-GC leaves. The distinct mechanisms underlying glucosinolate (GSL) synthesis in these two tissues remain unclear. Here, we discovered that aliphatic and aromatic GSLs, rather than indole GSLs, contribute to the positive correlation between GC in seeds and leaves. We performed selective-sweep analyses and identified the genomic footprints left after decades of intense selection for low-GC seeds. By conducting genome-wide association studies and analyzing differentially expressed genes in high- and low-GC seeds and leaves, we compiled lists of distinct genes involved in GSL synthesis in leaves and seeds separately. In particular, BnMYB28 plays a key role in regulating GC in both seeds and leaves. Selection and manipulation of BnaC09.MYB28 would affect GC in both tissues. However, downregulation of BnaA02.MYB28 and/or BnaC02.MYB28 would likely reduce GC in seeds without causing a concurrent reduction in GC in leaves.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"23"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00147-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Rapeseed cakes with low glucosinolates content (GC) possess high feeding value. However, the pursuit of low-GC seeds has inadvertently resulted in a reduction of GC in leaves, making plants more susceptible to stress and lowering their nutritional quality. Therefore, it is imperative to disrupt the tight association between GC in these two tissues and ultimately develop genotypes with low-GC seeds but high-GC leaves. The distinct mechanisms underlying glucosinolate (GSL) synthesis in these two tissues remain unclear. Here, we discovered that aliphatic and aromatic GSLs, rather than indole GSLs, contribute to the positive correlation between GC in seeds and leaves. We performed selective-sweep analyses and identified the genomic footprints left after decades of intense selection for low-GC seeds. By conducting genome-wide association studies and analyzing differentially expressed genes in high- and low-GC seeds and leaves, we compiled lists of distinct genes involved in GSL synthesis in leaves and seeds separately. In particular, BnMYB28 plays a key role in regulating GC in both seeds and leaves. Selection and manipulation of BnaC09.MYB28 would affect GC in both tissues. However, downregulation of BnaA02.MYB28 and/or BnaC02.MYB28 would likely reduce GC in seeds without causing a concurrent reduction in GC in leaves.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.