HR-NeRF: advancing realism and accuracy in highlight scene representation.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-04-16 eCollection Date: 2025-01-01 DOI:10.3389/fnbot.2025.1558948
Shufan Dai, Shanqin Wang
{"title":"HR-NeRF: advancing realism and accuracy in highlight scene representation.","authors":"Shufan Dai, Shanqin Wang","doi":"10.3389/fnbot.2025.1558948","DOIUrl":null,"url":null,"abstract":"<p><p>NeRF and its variants excel in novel view synthesis but struggle with scenes featuring specular highlights. To address this limitation, we introduce the Highlight Recovery Network (HRNet), a new architecture that enhances NeRF's ability to capture specular scenes. HRNet incorporates Swish activation functions, affine transformations, multilayer perceptrons (MLPs), and residual blocks, which collectively enable smooth non-linear transformations, adaptive feature scaling, and hierarchical feature extraction. The residual connections help mitigate the vanishing gradient problem, ensuring stable training. Despite the simplicity of HRNet's components, it achieves impressive results in recovering specular highlights. Additionally, a density voxel grid enhances model efficiency. Evaluations on four inward-facing benchmarks demonstrate that our approach outperforms NeRF and its variants, achieving a 3-5 dB PSNR improvement on each dataset while accurately capturing scene details. Furthermore, our method effectively preserves image details without requiring positional encoding, rendering a single scene in ~18 min on an NVIDIA RTX 3090 Ti GPU.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1558948"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041011/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1558948","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

NeRF and its variants excel in novel view synthesis but struggle with scenes featuring specular highlights. To address this limitation, we introduce the Highlight Recovery Network (HRNet), a new architecture that enhances NeRF's ability to capture specular scenes. HRNet incorporates Swish activation functions, affine transformations, multilayer perceptrons (MLPs), and residual blocks, which collectively enable smooth non-linear transformations, adaptive feature scaling, and hierarchical feature extraction. The residual connections help mitigate the vanishing gradient problem, ensuring stable training. Despite the simplicity of HRNet's components, it achieves impressive results in recovering specular highlights. Additionally, a density voxel grid enhances model efficiency. Evaluations on four inward-facing benchmarks demonstrate that our approach outperforms NeRF and its variants, achieving a 3-5 dB PSNR improvement on each dataset while accurately capturing scene details. Furthermore, our method effectively preserves image details without requiring positional encoding, rendering a single scene in ~18 min on an NVIDIA RTX 3090 Ti GPU.

HR-NeRF:在高光场景表现中推进现实主义和准确性。
NeRF和它的变体擅长新颖的视图合成,但与具有镜面高光的场景斗争。为了解决这一限制,我们引入了高光恢复网络(HRNet),这是一种增强NeRF捕捉高光场景能力的新架构。HRNet结合了Swish激活函数、仿射变换、多层感知器(mlp)和残差块,它们共同实现了平滑的非线性变换、自适应特征缩放和分层特征提取。残差连接有助于缓解梯度消失问题,保证训练的稳定性。尽管HRNet的组件简单,但它在恢复镜面高光方面取得了令人印象深刻的结果。此外,密度体素网格提高了模型效率。对四个内向基准的评估表明,我们的方法优于NeRF及其变体,在准确捕获场景细节的同时,在每个数据集上实现了3-5 dB的PSNR改进。此外,我们的方法在不需要位置编码的情况下有效地保留了图像细节,在NVIDIA RTX 3090 Ti GPU上渲染单个场景约18分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信