{"title":"Biodegradable multifunctional hyaluronic acid hydrogel microneedle band-aids for accelerating skin wound healing.","authors":"Erman Zhao, Xiuling Tang, Minggao Zhao, Le Yang","doi":"10.1007/s13346-025-01857-1","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing for various diseases and wounds such as diabetes and burns remains a major biomedical challenge. Conventional monotherapy is ineffective, and the efficacy of drug delivery is limited by the depth of drug penetration. In this study, we develop a novel, multifunctional, dissolvable hyaluronic acid (HA) microneedle patch (MN-LTT). Microneedling is biocompatible and delivers the drug in a painless and non-invasive manner. Lidocaine and thrombin are mixed with HA hydrogel and loaded onto the needle tips of the MN-LTT, which facilitates wound repair by continuously delivering the drug deep into the dermis for rapid analgesia and hemostasis. In addition, the backing layer of the MN-LTT is composed of tetracycline hydrochloride and HA hydrogel, and its excellent antimicrobial properties further accelerate wound healing. In a mouse full-thickness skin wound model, MN-LTT accelerated cell proliferation and granulation tissue growth, reduced inflammatory-factor levels, and restored collagen deposition, resulting in complete wound healing within seven days. Thus, the proposed microneedle delivery system achieved rapid hemostatic, analgesic, and bactericidal effects, providing a safer and more effective strategy for wound healing. These features make the multifunctional HA microneedle patch potentially valuable for clinical applications.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01857-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wound healing for various diseases and wounds such as diabetes and burns remains a major biomedical challenge. Conventional monotherapy is ineffective, and the efficacy of drug delivery is limited by the depth of drug penetration. In this study, we develop a novel, multifunctional, dissolvable hyaluronic acid (HA) microneedle patch (MN-LTT). Microneedling is biocompatible and delivers the drug in a painless and non-invasive manner. Lidocaine and thrombin are mixed with HA hydrogel and loaded onto the needle tips of the MN-LTT, which facilitates wound repair by continuously delivering the drug deep into the dermis for rapid analgesia and hemostasis. In addition, the backing layer of the MN-LTT is composed of tetracycline hydrochloride and HA hydrogel, and its excellent antimicrobial properties further accelerate wound healing. In a mouse full-thickness skin wound model, MN-LTT accelerated cell proliferation and granulation tissue growth, reduced inflammatory-factor levels, and restored collagen deposition, resulting in complete wound healing within seven days. Thus, the proposed microneedle delivery system achieved rapid hemostatic, analgesic, and bactericidal effects, providing a safer and more effective strategy for wound healing. These features make the multifunctional HA microneedle patch potentially valuable for clinical applications.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.