Interactive impacts of heat stress and microplastics contamination on the growth and biochemical response of wheat (Triticum aestivum) and maize (Zea mays) plants.
Muhammad Sajjad, Saraj Bahadur, Muhammad Aamir Farooq, Ming-Xun Ren
{"title":"Interactive impacts of heat stress and microplastics contamination on the growth and biochemical response of wheat (Triticum aestivum) and maize (Zea mays) plants.","authors":"Muhammad Sajjad, Saraj Bahadur, Muhammad Aamir Farooq, Ming-Xun Ren","doi":"10.1007/s10646-025-02892-x","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing global temperatures, driven largely by anthropogenic activities, pose a significant threat to crops worldwide, with heat stress (HS) emerging as one of the most severe challenges to agricultural productivity. Among the numerous human-induced pressures threatening terrestrial ecosystems globally, microplastics (MPs) represent one of the most persistent and urgent concerns. This study investigated the effects of heat stress (HS) at 35 °C and 40 °C (12 h exposure) on wheat (Triticum aestivum) and maize (Zea mays) grown in soil contaminated with polyethylene microplastics (PE-MPs; 0.01%, 0.1%, and 1% w/w), assessing their physiological and biochemical responses. The results indicated a significant (p < 0.05) reduction in plant height, root length, leaf area, chlorophyll content, and biomass of the selected plants due to MPs application. HS alone and in co-exposure with MPs caused damage to plant tissues as shown by significant (p < 0.05) reactive oxygen species (ROS) production, and lipid peroxidation. Under ROS induction, proline and antioxidant enzymes (CAT, POD, SOD) exhibited significantly (p < 0.05) higher levels in combined stress (HS + MPs) than in individual treatments. In conclusion, wheat exhibited higher levels of H2O2 and MDA stress markers indicating increased oxidative stress compared to maize. In contrast, maize showed elevated levels of proline, CAT, POD, and SOD, suggesting greater resistance to environmental stresses than wheat. Our results provide new understandings of sustainable agriculture practices and hold vast promise in addressing the challenges of HS and MP stresses in agricultural soils.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-025-02892-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global temperatures, driven largely by anthropogenic activities, pose a significant threat to crops worldwide, with heat stress (HS) emerging as one of the most severe challenges to agricultural productivity. Among the numerous human-induced pressures threatening terrestrial ecosystems globally, microplastics (MPs) represent one of the most persistent and urgent concerns. This study investigated the effects of heat stress (HS) at 35 °C and 40 °C (12 h exposure) on wheat (Triticum aestivum) and maize (Zea mays) grown in soil contaminated with polyethylene microplastics (PE-MPs; 0.01%, 0.1%, and 1% w/w), assessing their physiological and biochemical responses. The results indicated a significant (p < 0.05) reduction in plant height, root length, leaf area, chlorophyll content, and biomass of the selected plants due to MPs application. HS alone and in co-exposure with MPs caused damage to plant tissues as shown by significant (p < 0.05) reactive oxygen species (ROS) production, and lipid peroxidation. Under ROS induction, proline and antioxidant enzymes (CAT, POD, SOD) exhibited significantly (p < 0.05) higher levels in combined stress (HS + MPs) than in individual treatments. In conclusion, wheat exhibited higher levels of H2O2 and MDA stress markers indicating increased oxidative stress compared to maize. In contrast, maize showed elevated levels of proline, CAT, POD, and SOD, suggesting greater resistance to environmental stresses than wheat. Our results provide new understandings of sustainable agriculture practices and hold vast promise in addressing the challenges of HS and MP stresses in agricultural soils.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.