Antonio G Dias, Elias M Duarte, Jose Victor Zambrana, Jaime A Cardona-Ospina, Sandra Bos, Vicky Roy, Julia Huffaker, Guillermina Kuan, Angel Balmaseda, Galit Alter, Eva Harris
{"title":"Anti-dengue virus antibodies that elicit complement-mediated lysis of Zika virion correlate with protection from severe dengue disease.","authors":"Antonio G Dias, Elias M Duarte, Jose Victor Zambrana, Jaime A Cardona-Ospina, Sandra Bos, Vicky Roy, Julia Huffaker, Guillermina Kuan, Angel Balmaseda, Galit Alter, Eva Harris","doi":"10.1016/j.celrep.2025.115613","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies from primary dengue (DENV1-4) or Zika (ZIKV) virus infections can influence subsequent heterotypic infections, but their protective characteristics are not well defined. We analyzed pre-infection plasma samples from children in our Nicaraguan cohort study who later developed either dengue fever (DF; n = 31) or dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS; n = 33) upon secondary heterotypic DENV infection. Various antibody properties, notably antibody-dependent complement deposition, correlated with protection against DHF/DSS. Interestingly, this association was strongest when using recombinant ZIKV antigens despite participants being ZIKV naive. Additionally, complement-mediated virion lysis (virolysis) with ZIKV virions was strongly associated with protection, a finding replicated in an independent sample set. ZIKV virolysis emerged as the only antibody property linked to reduced risk of DHF/DSS and severe symptoms such as thrombocytopenia and plasma leakage. These results suggest that ZIKV-cross-reactive anti-DENV antibodies that mediate complement-dependent virolysis may lower the risk of severe disease, informing the development of effective dengue vaccines and therapeutics.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115613"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115613","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibodies from primary dengue (DENV1-4) or Zika (ZIKV) virus infections can influence subsequent heterotypic infections, but their protective characteristics are not well defined. We analyzed pre-infection plasma samples from children in our Nicaraguan cohort study who later developed either dengue fever (DF; n = 31) or dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS; n = 33) upon secondary heterotypic DENV infection. Various antibody properties, notably antibody-dependent complement deposition, correlated with protection against DHF/DSS. Interestingly, this association was strongest when using recombinant ZIKV antigens despite participants being ZIKV naive. Additionally, complement-mediated virion lysis (virolysis) with ZIKV virions was strongly associated with protection, a finding replicated in an independent sample set. ZIKV virolysis emerged as the only antibody property linked to reduced risk of DHF/DSS and severe symptoms such as thrombocytopenia and plasma leakage. These results suggest that ZIKV-cross-reactive anti-DENV antibodies that mediate complement-dependent virolysis may lower the risk of severe disease, informing the development of effective dengue vaccines and therapeutics.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.