{"title":"Mutation Mapping of PD-L1 Expression in Advanced Non-small Cell Lung Cancer: A Real-world Retrospective Cohort Study.","authors":"Fang Hao, Qing Ma, Diansheng Zhong","doi":"10.2174/0113862073368808250416035054","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The duration of response to immune checkpoint inhibitors (ICIs) varies because of tumor immune heterogeneity, and employing programmed death receptor ligand 1 (PD-L1) expression to evaluate the efficacy of anti-programmed cell death-1 (PD-1)/PD-L1 antibodies remains controversial.</p><p><strong>Method: </strong>A total of 138 advanced non-small cell lung cancer (NSCLC) patients were subdivided into 2 groups - 52 patients with a PD-L1 Expression≥50% and 86 patients with a PD-L1 Expression <50% - based on next-generation sequencing (NGS) to analyze multiple-dimensional data types, including tumor mutation burden (TMB), gene alterations, gene enrichment analysis, therapy response, and immune-related adverse events (irAEs).</p><p><strong>Results: </strong>High levels of PD-L1 expression were significantly associated with advanced age and TMB status. The PD-L1≥50% cohort presented mutations of KRAS, NOTCH1, and FAT, while the PD-L1<50% group exhibited mutations of EGFR, PTEN, or LATS1/2. Except for the ascertained DNA damage response regulation. Even though there was no significant difference between PD-L1≥50% and PD-L1<50% cohorts on therapy response, patients with a PD-L1 Expression≥ 50% elicited a high irAEs incidence rate and increased plasma interleukin 6 (IL-6) concentration.</p><p><strong>Conclusion: </strong>This real-world retrospective study suggested that high expression of PD-L1 exhibited inappropriate activation of different pathways and collaborated with anti-cytokines and chemokines therapy may optimize clinical therapy efficacy.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073368808250416035054","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The duration of response to immune checkpoint inhibitors (ICIs) varies because of tumor immune heterogeneity, and employing programmed death receptor ligand 1 (PD-L1) expression to evaluate the efficacy of anti-programmed cell death-1 (PD-1)/PD-L1 antibodies remains controversial.
Method: A total of 138 advanced non-small cell lung cancer (NSCLC) patients were subdivided into 2 groups - 52 patients with a PD-L1 Expression≥50% and 86 patients with a PD-L1 Expression <50% - based on next-generation sequencing (NGS) to analyze multiple-dimensional data types, including tumor mutation burden (TMB), gene alterations, gene enrichment analysis, therapy response, and immune-related adverse events (irAEs).
Results: High levels of PD-L1 expression were significantly associated with advanced age and TMB status. The PD-L1≥50% cohort presented mutations of KRAS, NOTCH1, and FAT, while the PD-L1<50% group exhibited mutations of EGFR, PTEN, or LATS1/2. Except for the ascertained DNA damage response regulation. Even though there was no significant difference between PD-L1≥50% and PD-L1<50% cohorts on therapy response, patients with a PD-L1 Expression≥ 50% elicited a high irAEs incidence rate and increased plasma interleukin 6 (IL-6) concentration.
Conclusion: This real-world retrospective study suggested that high expression of PD-L1 exhibited inappropriate activation of different pathways and collaborated with anti-cytokines and chemokines therapy may optimize clinical therapy efficacy.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.