Michael C Jin, Karthik Ravi, Adela Wu, Cesar A Garcia, Adrian J Rodrigues, Solomiia Savchuk, Gabriela D Ruiz Colón, Bina W Kakusa, Jonathon J Parker, Gerald A Grant, Laura M Prolo
{"title":"Prediction of seizure risk after repetitive mild traumatic brain injury in childhood.","authors":"Michael C Jin, Karthik Ravi, Adela Wu, Cesar A Garcia, Adrian J Rodrigues, Solomiia Savchuk, Gabriela D Ruiz Colón, Bina W Kakusa, Jonathon J Parker, Gerald A Grant, Laura M Prolo","doi":"10.3171/2025.1.PEDS2436","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Despite the known negative physiological impact of repeated mild head trauma events, their multiplicative impact on long-term seizure risk remains unclear. The objective of this study was to evaluate how multiple mild traumatic brain injuries (mTBIs) impact long-term seizure risk by testing 3 distinct machine learning approaches. Baseline and injury-specific characteristics were incorporated to enhance prognostication of individual seizure risk.</p><p><strong>Methods: </strong>Children with at least 1 mTBI event without prior evidence of seizure or antiepileptic drug treatment, from 2003 to 2021, were identified from a nationally sourced administrative claims database. The primary outcome of interest was a seizure event after mTBI, defined by qualifying principal diagnosis codes. Time-varying multivariable Cox regression was used to assess the impact of repeated mTBI.</p><p><strong>Results: </strong>A total of 156,118 children (mean age 11.7 ± 4.7 years) were included, with a median follow-up duration of 22.6 months (IQR 9.2-45.4 months). Among patients who experienced seizure after mTBI, the median time to seizure was 306 days. Seizures among those with radiographic findings and/or loss of consciousness occurred earlier (median time to seizure 112.5 days [imaging findings only, IQR 5-526.25 days], 80 days [loss of consciousness only, IQR 7-652 days], 22 days [both, IQR 5-192 days]). Both mTBI without and with short-term loss of consciousness resulted in increasing seizure risk with repeated trauma (HR 1.196, 95% CI 1.082-1.322; HR 2.025, 95% CI 1.828-2.244; respectively). The random survival forest approach achieved fixed-time areas under the receiver operating characteristic curve of 0.780 and 0.777 at 30 and 90 days after mTBI, and children predicted at high risk by the final model experienced a significantly higher burden of early seizure after mTBI (46.7% within the first 30 days vs 17.7% and 19.9% of children at low and medium risk). A simplified model using the top 12 contributing features achieved 95% of the full model's performance in the validation set.</p><p><strong>Conclusions: </strong>A novel machine learning model was developed and validated for personalized prediction of long-term seizure risk following multiple mTBIs. Model performance remained robust with a limited feature set, suggesting the feasibility of real-time incorporation into clinical workflows for individualized prognostication following each repeat mTBI event. In children predicted to be at high risk, early intervention should be considered.</p>","PeriodicalId":16549,"journal":{"name":"Journal of neurosurgery. Pediatrics","volume":" ","pages":"1-10"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgery. Pediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2025.1.PEDS2436","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Despite the known negative physiological impact of repeated mild head trauma events, their multiplicative impact on long-term seizure risk remains unclear. The objective of this study was to evaluate how multiple mild traumatic brain injuries (mTBIs) impact long-term seizure risk by testing 3 distinct machine learning approaches. Baseline and injury-specific characteristics were incorporated to enhance prognostication of individual seizure risk.
Methods: Children with at least 1 mTBI event without prior evidence of seizure or antiepileptic drug treatment, from 2003 to 2021, were identified from a nationally sourced administrative claims database. The primary outcome of interest was a seizure event after mTBI, defined by qualifying principal diagnosis codes. Time-varying multivariable Cox regression was used to assess the impact of repeated mTBI.
Results: A total of 156,118 children (mean age 11.7 ± 4.7 years) were included, with a median follow-up duration of 22.6 months (IQR 9.2-45.4 months). Among patients who experienced seizure after mTBI, the median time to seizure was 306 days. Seizures among those with radiographic findings and/or loss of consciousness occurred earlier (median time to seizure 112.5 days [imaging findings only, IQR 5-526.25 days], 80 days [loss of consciousness only, IQR 7-652 days], 22 days [both, IQR 5-192 days]). Both mTBI without and with short-term loss of consciousness resulted in increasing seizure risk with repeated trauma (HR 1.196, 95% CI 1.082-1.322; HR 2.025, 95% CI 1.828-2.244; respectively). The random survival forest approach achieved fixed-time areas under the receiver operating characteristic curve of 0.780 and 0.777 at 30 and 90 days after mTBI, and children predicted at high risk by the final model experienced a significantly higher burden of early seizure after mTBI (46.7% within the first 30 days vs 17.7% and 19.9% of children at low and medium risk). A simplified model using the top 12 contributing features achieved 95% of the full model's performance in the validation set.
Conclusions: A novel machine learning model was developed and validated for personalized prediction of long-term seizure risk following multiple mTBIs. Model performance remained robust with a limited feature set, suggesting the feasibility of real-time incorporation into clinical workflows for individualized prognostication following each repeat mTBI event. In children predicted to be at high risk, early intervention should be considered.