Antimicrobial Potential of Marine Sponge-Associated Bacillus velezensis and Stutzerimonas stutzeri from the Indian Coast: A Genome Mining and Metabolite Profiling Approach.
Heena U Devkar, Kartik Juyal, Narsinh L Thakur, Parvinder Kaur, Keyur Parmar, Radhakrishnanand Pullapanthula, Shridhar Narayanan
{"title":"Antimicrobial Potential of Marine Sponge-Associated Bacillus velezensis and Stutzerimonas stutzeri from the Indian Coast: A Genome Mining and Metabolite Profiling Approach.","authors":"Heena U Devkar, Kartik Juyal, Narsinh L Thakur, Parvinder Kaur, Keyur Parmar, Radhakrishnanand Pullapanthula, Shridhar Narayanan","doi":"10.1007/s00284-025-04262-6","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is one of the leading health crises worldwide that demands new antimicrobials to enter the clinical pipeline. Marine sponges are a rich source of promising bioactive compounds. Due to their sessile nature and filter-feeding lifestyle, sponges are prone to attack by competitors, predators, and pathogens. To combat these threats, they produce a diverse array of bioactive compounds. Notably, the microbial communities residing within the sponges make many of these beneficial compounds. Twenty-one bacterial isolates from various marine sponges from the Indian coast were selected for this study. The bacterial isolates were fermented to obtain crude extracts, which were then screened against critical bacterial pathogens. Based on the MIC (minimum inhibitory concentration) results, two isolates, Bacillus velezensis NIO_002 and Stutzerimonas stutzeri NIO_003 showing good activity, were characterized by morphological, biochemical, and molecular methods. Genome mining predicted multiple antibiotic biosynthetic gene clusters, most of which showed a high degree of similarity to known gene clusters, and some with low or no similarity which may be indicative of novel gene clusters. LC-MS (liquid chromatography-mass spectrometry) data revealed the putative presence of certain antibacterial compounds previously reported in the literature. To our knowledge, this is the first study to report the antimicrobial activity of marine sponge-associated Bacillus velezensis and Stutzerimonas stutzeri strains characterized by whole genome sequencing, thereby indicating the novelty of our strains. This study emphasizes the potential of our bacterial isolates for further development as a source of promising antibiotics to address the escalating challenge of drug-resistant pathogens.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 6","pages":"280"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04262-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance (AMR) is one of the leading health crises worldwide that demands new antimicrobials to enter the clinical pipeline. Marine sponges are a rich source of promising bioactive compounds. Due to their sessile nature and filter-feeding lifestyle, sponges are prone to attack by competitors, predators, and pathogens. To combat these threats, they produce a diverse array of bioactive compounds. Notably, the microbial communities residing within the sponges make many of these beneficial compounds. Twenty-one bacterial isolates from various marine sponges from the Indian coast were selected for this study. The bacterial isolates were fermented to obtain crude extracts, which were then screened against critical bacterial pathogens. Based on the MIC (minimum inhibitory concentration) results, two isolates, Bacillus velezensis NIO_002 and Stutzerimonas stutzeri NIO_003 showing good activity, were characterized by morphological, biochemical, and molecular methods. Genome mining predicted multiple antibiotic biosynthetic gene clusters, most of which showed a high degree of similarity to known gene clusters, and some with low or no similarity which may be indicative of novel gene clusters. LC-MS (liquid chromatography-mass spectrometry) data revealed the putative presence of certain antibacterial compounds previously reported in the literature. To our knowledge, this is the first study to report the antimicrobial activity of marine sponge-associated Bacillus velezensis and Stutzerimonas stutzeri strains characterized by whole genome sequencing, thereby indicating the novelty of our strains. This study emphasizes the potential of our bacterial isolates for further development as a source of promising antibiotics to address the escalating challenge of drug-resistant pathogens.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.