Ivana M Perović, Stefan D Mitrović, Snežana M Brković, Igor A Pašti
{"title":"Advances in Nickel-Based Catalysts for Alkaline Water Electrolysis: Comprehensive Review of Current Research Direction for HER and OER Applications.","authors":"Ivana M Perović, Stefan D Mitrović, Snežana M Brković, Igor A Pašti","doi":"10.1002/tcr.202500049","DOIUrl":null,"url":null,"abstract":"<p><p>Nickel-based catalysts are among the most promising materials for electrocatalytic water splitting, particularly for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. Their abundance, cost-effectiveness, and tunable electrochemical properties make them attractive alternatives to precious metal catalysts. This review provides a comprehensive analysis of the advancements in nickel-based catalysts, including pure nickel, alloys, oxides, hydroxides, and spinels, emphasizing their synthesis methods, structural properties, and electrocatalytic performance. Recent nanostructuring, doping, and hybridization innovations with conductive supports have significantly enhanced catalytic activity, stability, and efficiency. Despite notable progress, challenges remain in improving long-term durability, minimizing surface degradation, and scaling up production for industrial applications. Addressing these limitations through advanced catalyst design, in situ characterization, and integration with renewable energy sources will be crucial for widely adopting nickel-based catalysts in sustainable hydrogen production. This review highlights the key developments and future directions in the field, underscoring the role of nickel-based materials in enabling the hydrogen economy and global decarbonization efforts.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202500049"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202500049","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel-based catalysts are among the most promising materials for electrocatalytic water splitting, particularly for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. Their abundance, cost-effectiveness, and tunable electrochemical properties make them attractive alternatives to precious metal catalysts. This review provides a comprehensive analysis of the advancements in nickel-based catalysts, including pure nickel, alloys, oxides, hydroxides, and spinels, emphasizing their synthesis methods, structural properties, and electrocatalytic performance. Recent nanostructuring, doping, and hybridization innovations with conductive supports have significantly enhanced catalytic activity, stability, and efficiency. Despite notable progress, challenges remain in improving long-term durability, minimizing surface degradation, and scaling up production for industrial applications. Addressing these limitations through advanced catalyst design, in situ characterization, and integration with renewable energy sources will be crucial for widely adopting nickel-based catalysts in sustainable hydrogen production. This review highlights the key developments and future directions in the field, underscoring the role of nickel-based materials in enabling the hydrogen economy and global decarbonization efforts.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.