Xinyu Zong, Shangying Xiao, Haishan Xia, Dan Guo, Jiaping Wu, Manjiao Zhuang, Lei Rao
{"title":"Recombinant Hydrophobic Polypeptide MBAY Loaded Into SPION-Exosome Realizes Sustained-Release to Improve Type 2 Diabetes Mellitus.","authors":"Xinyu Zong, Shangying Xiao, Haishan Xia, Dan Guo, Jiaping Wu, Manjiao Zhuang, Lei Rao","doi":"10.2147/DDDT.S499641","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>BAY55-9837, a potential therapeutic peptide for the treatment of type 2 diabetes mellitus (T2DM), can induce glucose (GLC)-dependent insulin secretion. Our previous study has demonstrated that the use of superparamagnetic iron oxide nanoparticle-decorated exosome (exosome-SPION) and external magnetic force (MF) enables BAY 55-9837 to target pancreatic islets. However, the initial burst release of BAY 55-9837 loaded within exosome-SPION shortens its in vivo half-life and consequently reduces the frequency of GLC responsiveness. Therefore, in our study, the transmembrane hydrophobic structure of the exosome signature protein CD81 was fused with BAY 55-9837 to obtain MBAY with sustained-release capability.</p><p><strong>Methods: </strong>MBAY was fabricated via genetic engineering, and the dissociation constant (Kd) was determined to assess its affinity for vasoactive intestinal peptide receptor type 2 (VPACII). Subsequently, MABY was incorporated into exosomes through electroporation to obtain MBAY-exosome, and SPOIN was adorned on MBAY-exosome by means of the self-assembly of transferrin (Tf) and the transferrin receptor (TfR). The in vitro release profile and in vivo pharmacokinetic profile of MBAY-Exosome-SPION were detected using high-performance liquid chromatography (HPLC). The L9(3<sup>4</sup>) orthogonal design approach was utilized to optimize the drug administration mode in vivo. The therapeutic effect of MBAY-exosome-SPIONs/MF on T2DM was assessed both in vitro and in vivo.</p><p><strong>Results: </strong>In vitro studies showed that the release rate of MBAY from exosome-SPION was slower compared with BAY 55-9837. Meanwhile, MBAY still maintained high affinity and selectivity for VPAC II and MBAY-exosome-SPIONs/MF could effectively promote insulin secretion in response to elevated GLC as BAY-exosome-SPIONs/MF. In vivo studies indicated that MBAY-exosome-SPIONs had a prolonged half-life and improved pharmacokinetic parameters compared to BAY-exosome-SPIONs, which further alleviated the symptoms of T2DM model mice.</p><p><strong>Conclusion: </strong>Thus, the reconstructed MBAY loaded in SPION-exosome realized sustained-release and exosomes-SPIONS achieved pancreatic targeting which led to ideal therapeutic effect in T2DM mice.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"3103-3118"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034843/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S499641","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: BAY55-9837, a potential therapeutic peptide for the treatment of type 2 diabetes mellitus (T2DM), can induce glucose (GLC)-dependent insulin secretion. Our previous study has demonstrated that the use of superparamagnetic iron oxide nanoparticle-decorated exosome (exosome-SPION) and external magnetic force (MF) enables BAY 55-9837 to target pancreatic islets. However, the initial burst release of BAY 55-9837 loaded within exosome-SPION shortens its in vivo half-life and consequently reduces the frequency of GLC responsiveness. Therefore, in our study, the transmembrane hydrophobic structure of the exosome signature protein CD81 was fused with BAY 55-9837 to obtain MBAY with sustained-release capability.
Methods: MBAY was fabricated via genetic engineering, and the dissociation constant (Kd) was determined to assess its affinity for vasoactive intestinal peptide receptor type 2 (VPACII). Subsequently, MABY was incorporated into exosomes through electroporation to obtain MBAY-exosome, and SPOIN was adorned on MBAY-exosome by means of the self-assembly of transferrin (Tf) and the transferrin receptor (TfR). The in vitro release profile and in vivo pharmacokinetic profile of MBAY-Exosome-SPION were detected using high-performance liquid chromatography (HPLC). The L9(34) orthogonal design approach was utilized to optimize the drug administration mode in vivo. The therapeutic effect of MBAY-exosome-SPIONs/MF on T2DM was assessed both in vitro and in vivo.
Results: In vitro studies showed that the release rate of MBAY from exosome-SPION was slower compared with BAY 55-9837. Meanwhile, MBAY still maintained high affinity and selectivity for VPAC II and MBAY-exosome-SPIONs/MF could effectively promote insulin secretion in response to elevated GLC as BAY-exosome-SPIONs/MF. In vivo studies indicated that MBAY-exosome-SPIONs had a prolonged half-life and improved pharmacokinetic parameters compared to BAY-exosome-SPIONs, which further alleviated the symptoms of T2DM model mice.
Conclusion: Thus, the reconstructed MBAY loaded in SPION-exosome realized sustained-release and exosomes-SPIONS achieved pancreatic targeting which led to ideal therapeutic effect in T2DM mice.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.