Bionic gene delivery system activates tumor autophagy and immunosuppressive niche to sensitize anti-PD-1 treatment against STK11-mutated lung adenocarcinoma.
IF 10.6 1区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Bionic gene delivery system activates tumor autophagy and immunosuppressive niche to sensitize anti-PD-1 treatment against STK11-mutated lung adenocarcinoma.","authors":"Zhongquan Song, Qikai Wang, Hongjie Xiong, Jiang Xiao, Zihan Zhou, Tianxiang Li, Qian Sun, Liping Qiu, Yue Tan, Xiaohui Liu, Hui Jiang, Shuhua Han, Xuemei Wang","doi":"10.1186/s12951-025-03404-z","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical data have shown that Serine/Threonine Kinase 11 (STK11) mutation may be associated with an immunosuppressive tumor microenvironment (ITEM) and poor prognosis and failure of anti-PD-1 (αPD1) treatment in non-small cell lung cancer (NSCLC). To explore the potential of restoring STK11 protein in immunotherapy, a bionic gene delivery system was prepared by coating the STK11-encoded DNA-cationic polymer complex core with the tumor cell membrane, termed STK11@PPCM. STK11@PPCM could specifically bind with NSCLC cells and achieve precise delivery of STK11-encoded DNA. The released DNA effectively restored the STK11 protein expression, consequently reactivating autophagy and immunogenic cell death (ICD) in cancer cells. The liberated damage-associated molecular patterns (DAMPs) and autophagosome induced dendritic cells (DCs) maturation, which in turn enhanced CD8 + T cell infiltration, M1 macrophage polarization, and proinflammatory factor expression, thereby reversing the ITEM. Moreover, STK11@PPCM was also found to improve the sensitivity of cancer cells to αPD1 by increasing the expression of PD-L1, which was confirmed in STK11-mutated NSCLC cell xenografted mouse models, constructed by CRISPR-Cas9 knockout technology. This work demonstrated for the first time that restoration of functional STK11 can effectively reverse ITME and boost αPD1 efficacy in NSCLC, offering a new therapeutic approach for STK11-mutated lung adenocarcinoma in clinic.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"312"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03404-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical data have shown that Serine/Threonine Kinase 11 (STK11) mutation may be associated with an immunosuppressive tumor microenvironment (ITEM) and poor prognosis and failure of anti-PD-1 (αPD1) treatment in non-small cell lung cancer (NSCLC). To explore the potential of restoring STK11 protein in immunotherapy, a bionic gene delivery system was prepared by coating the STK11-encoded DNA-cationic polymer complex core with the tumor cell membrane, termed STK11@PPCM. STK11@PPCM could specifically bind with NSCLC cells and achieve precise delivery of STK11-encoded DNA. The released DNA effectively restored the STK11 protein expression, consequently reactivating autophagy and immunogenic cell death (ICD) in cancer cells. The liberated damage-associated molecular patterns (DAMPs) and autophagosome induced dendritic cells (DCs) maturation, which in turn enhanced CD8 + T cell infiltration, M1 macrophage polarization, and proinflammatory factor expression, thereby reversing the ITEM. Moreover, STK11@PPCM was also found to improve the sensitivity of cancer cells to αPD1 by increasing the expression of PD-L1, which was confirmed in STK11-mutated NSCLC cell xenografted mouse models, constructed by CRISPR-Cas9 knockout technology. This work demonstrated for the first time that restoration of functional STK11 can effectively reverse ITME and boost αPD1 efficacy in NSCLC, offering a new therapeutic approach for STK11-mutated lung adenocarcinoma in clinic.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.