Liquidambaric acid as a non-competitive α-glucosidase inhibitor: multi-level evidence from enzyme kinetics, molecular docking, molecular dynamics simulations, and a Drosophila hyperglycaemic model.
{"title":"Liquidambaric acid as a non-competitive α-glucosidase inhibitor: multi-level evidence from enzyme kinetics, molecular docking, molecular dynamics simulations, and a <i>Drosophila</i> hyperglycaemic model.","authors":"Liwei Jia, Yan Liu, Bo Fu, Yuan Tian, Xin Meng","doi":"10.1080/14756366.2025.2497486","DOIUrl":null,"url":null,"abstract":"<p><p>Liquidambaric acid, a pentacyclic triterpenoid from <i>Liquidambar formosana Hance</i>, was evaluated as a novel α-glucosidase inhibitor for type 2 diabetes mellitus (T2DM) management. Enzyme kinetic assays revealed its potent non-competitive inhibition (IC<sub>50</sub> = 0.12 mM). Molecular docking showed stable hydrogen bonding at an allosteric site, altering enzyme conformation, while 100 ns molecular dynamics (MD) simulations confirmed the stability of the protein-ligand complex. <i>In vivo</i>, a <i>Drosophila melanogaster</i> hyperglycaemic model demonstrated significant glucose reduction, confirming its hypoglycaemic potential. ADMET analysis predicted favourable bioavailability and low toxicity, supporting its development as a safe therapeutic agent. These findings integrate enzyme kinetics, molecular modelling, MD simulations, and <i>in vivo</i> validation, highlighting liquidambaric acid's potential as a multifunctional and cost-effective agent for T2DM management.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2497486"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2497486","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquidambaric acid, a pentacyclic triterpenoid from Liquidambar formosana Hance, was evaluated as a novel α-glucosidase inhibitor for type 2 diabetes mellitus (T2DM) management. Enzyme kinetic assays revealed its potent non-competitive inhibition (IC50 = 0.12 mM). Molecular docking showed stable hydrogen bonding at an allosteric site, altering enzyme conformation, while 100 ns molecular dynamics (MD) simulations confirmed the stability of the protein-ligand complex. In vivo, a Drosophila melanogaster hyperglycaemic model demonstrated significant glucose reduction, confirming its hypoglycaemic potential. ADMET analysis predicted favourable bioavailability and low toxicity, supporting its development as a safe therapeutic agent. These findings integrate enzyme kinetics, molecular modelling, MD simulations, and in vivo validation, highlighting liquidambaric acid's potential as a multifunctional and cost-effective agent for T2DM management.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.