Lithium and neuroprotection: a review of molecular targets and biological effects at subtherapeutic concentrations in preclinical models of Alzheimer's disease.
Vanessa de Jesus R De-Paula, Marcia Radanovic, Orestes Vicente Forlenza
{"title":"Lithium and neuroprotection: a review of molecular targets and biological effects at subtherapeutic concentrations in preclinical models of Alzheimer's disease.","authors":"Vanessa de Jesus R De-Paula, Marcia Radanovic, Orestes Vicente Forlenza","doi":"10.1186/s40345-025-00386-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Experimental studies consistently demonstrate that lithium modulates multiple intracellular signaling pathways involved in crucial neurobiological responses, highlighting its therapeutic potential in degenerative diseases. Lithium has demonstrated significant neuroprotective potential in preclinical models of Alzheimer's disease (AD) and other neurodegenerative disorders.</p><p><strong>Contents: </strong>This review examines the molecular mechanisms and biological effects of lithium at subtherapeutic concentrations, focusing on its ability to modulate key intracellular pathways, such as the inhibition of glycogen synthase kinase-3 beta (GSK-3β), reduction of Tau hyperphosphorylation, and enhancement of neurotrophic and anti-inflammatory responses. Evidence from animal and cellular studies underscores lithium's ability to reduce amyloid plaques, maintain neuronal integrity, improve memory, and decrease neuroinflammation, even at doses much lower than those used clinically for mood stabilization.</p><p><strong>Conclusion: </strong>Evidence from animal and cellular models indicates that subtherapeutic lithium doses may provide a safer and more practical approach to neuroprotection, particularly in AD. However, further research is necessary to optimize dosing strategies, assess long-term safety, and translate these findings into clinical applications.</p>","PeriodicalId":13944,"journal":{"name":"International Journal of Bipolar Disorders","volume":"13 1","pages":"16"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bipolar Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40345-025-00386-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Experimental studies consistently demonstrate that lithium modulates multiple intracellular signaling pathways involved in crucial neurobiological responses, highlighting its therapeutic potential in degenerative diseases. Lithium has demonstrated significant neuroprotective potential in preclinical models of Alzheimer's disease (AD) and other neurodegenerative disorders.
Contents: This review examines the molecular mechanisms and biological effects of lithium at subtherapeutic concentrations, focusing on its ability to modulate key intracellular pathways, such as the inhibition of glycogen synthase kinase-3 beta (GSK-3β), reduction of Tau hyperphosphorylation, and enhancement of neurotrophic and anti-inflammatory responses. Evidence from animal and cellular studies underscores lithium's ability to reduce amyloid plaques, maintain neuronal integrity, improve memory, and decrease neuroinflammation, even at doses much lower than those used clinically for mood stabilization.
Conclusion: Evidence from animal and cellular models indicates that subtherapeutic lithium doses may provide a safer and more practical approach to neuroprotection, particularly in AD. However, further research is necessary to optimize dosing strategies, assess long-term safety, and translate these findings into clinical applications.
期刊介绍:
The International Journal of Bipolar Disorders is a peer-reviewed, open access online journal published under the SpringerOpen brand. It publishes contributions from the broad range of clinical, psychological and biological research in bipolar disorders. It is the official journal of the ECNP-ENBREC (European Network of Bipolar Research Expert Centres ) Bipolar Disorders Network, the International Group for the study of Lithium Treated Patients (IGSLi) and the Deutsche Gesellschaft für Bipolare Störungen (DGBS) and invites clinicians and researchers from around the globe to submit original research papers, short research communications, reviews, guidelines, case reports and letters to the editor that help to enhance understanding of bipolar disorders.