Machine learning to optimise use of natriuretic peptides in the diagnosis of acute heart failure.

IF 3.9 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Dimitrios Doudesis, Kuan Ken Lee, Mohamed Anwar, Adam J Singer, Judd E Hollander, Camille Chenevier-Gobeaux, Yann-Erick Claessens, Desiree Wussler, Dominic Weil, Nikola Kozhuharov, Ivo Strebel, Zaid Sabti, Christopher deFilippi, Stephen Seliger, Evandro Tinoco Mesquita, Jan C Wiemer, Martin Möckel, Joel Coste, Patrick Jourdain, Komukai Kimiaki, Michihiro Yoshimura, Irwani Ibrahim, Shirley Beng Suat Ooi, Win Sen Kuan, Alfons Gegenhuber, Thomas Mueller, Olivier Hanon, Jean-Sébastien Vidal, Peter Cameron, Louisa Lam, Ben Freedman, Tommy Chung, Sean P Collins, Christopher J Lindsell, David E Newby, Alan G Japp, Anoop S V Shah, Humberto Villacorta, A Mark Richards, John J V McMurray, Christian Mueller, James L Januzzi, Nicholas L Mills
{"title":"Machine learning to optimise use of natriuretic peptides in the diagnosis of acute heart failure.","authors":"Dimitrios Doudesis, Kuan Ken Lee, Mohamed Anwar, Adam J Singer, Judd E Hollander, Camille Chenevier-Gobeaux, Yann-Erick Claessens, Desiree Wussler, Dominic Weil, Nikola Kozhuharov, Ivo Strebel, Zaid Sabti, Christopher deFilippi, Stephen Seliger, Evandro Tinoco Mesquita, Jan C Wiemer, Martin Möckel, Joel Coste, Patrick Jourdain, Komukai Kimiaki, Michihiro Yoshimura, Irwani Ibrahim, Shirley Beng Suat Ooi, Win Sen Kuan, Alfons Gegenhuber, Thomas Mueller, Olivier Hanon, Jean-Sébastien Vidal, Peter Cameron, Louisa Lam, Ben Freedman, Tommy Chung, Sean P Collins, Christopher J Lindsell, David E Newby, Alan G Japp, Anoop S V Shah, Humberto Villacorta, A Mark Richards, John J V McMurray, Christian Mueller, James L Januzzi, Nicholas L Mills","doi":"10.1093/ehjacc/zuaf051","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>B-type natriuretic peptide (BNP) and mid-regional pro-atrial natriuretic peptide (MR-proANP) testing are guideline-recommended to aid in the diagnosis of acute heart failure. Nevertheless, the diagnostic performance of these biomarkers is uncertain.</p><p><strong>Methods: </strong>We performed a systematic review and individual patient-level data meta-analysis to evaluate the diagnostic performance of BNP and MR-proANP. We subsequently developed and externally validated a decision-support tool called CoDE-HF that combines natriuretic peptide concentrations with clinical variables using machine learning to report the probability of acute heart failure.</p><p><strong>Results: </strong>Fourteen studies from 12 countries provided individual patient-level data in 8,493 patients for BNP and 3,899 patients for MR-proANP, in whom, 48.3% (4,105/8,493) and 41.3% (1,611/3,899) had an adjudicated diagnosis of acute heart failure, respectively. The negative predictive value (NPV) of guideline-recommended thresholds for BNP (100 pg/mL) and MR-proANP (120 pmol/L) was 93.6% (95% confidence interval 88.4-96.6%) and 95.6% (92.2-97.6%), respectively, whilst the positive predictive value (PPV) was 68.8% (62.9-74.2%) and 64.8% (56.3-72.5%). Significant heterogeneity in the performance of these thresholds was observed across important subgroups. CoDE-HF was well calibrated with excellent discrimination in those without prior acute heart failure for both BNP and MR-proANP (area under the curve of 0.914 [0.906-0.921] and 0.929 [0.919-0.939], and Brier scores of 0.110 and 0.094, respectively). CoDE-HF with BNP and MR-proANP identified 30% and 48% as low-probability (NPV of 98.5% [97.1-99.3%] and 98.5% [97.7-99.0%]), and 30% and 28% as high-probability (PPV of 78.6% [70.4-85.0%] and 75.1% [70.9-78.9%]), respectively, and performed consistently across subgroups.</p><p><strong>Conclusion: </strong>The diagnostic performance of guideline-recommended BNP and MR-proANP thresholds for acute heart failure varied significantly across patient subgroups. A decision-support tool that combines natriuretic peptides and clinical variables was more accurate and supports more individualised diagnosis.</p><p><strong>Study registration: </strong>PROSPERO number, CRD42019159407.</p>","PeriodicalId":11861,"journal":{"name":"European Heart Journal: Acute Cardiovascular Care","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal: Acute Cardiovascular Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ehjacc/zuaf051","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: B-type natriuretic peptide (BNP) and mid-regional pro-atrial natriuretic peptide (MR-proANP) testing are guideline-recommended to aid in the diagnosis of acute heart failure. Nevertheless, the diagnostic performance of these biomarkers is uncertain.

Methods: We performed a systematic review and individual patient-level data meta-analysis to evaluate the diagnostic performance of BNP and MR-proANP. We subsequently developed and externally validated a decision-support tool called CoDE-HF that combines natriuretic peptide concentrations with clinical variables using machine learning to report the probability of acute heart failure.

Results: Fourteen studies from 12 countries provided individual patient-level data in 8,493 patients for BNP and 3,899 patients for MR-proANP, in whom, 48.3% (4,105/8,493) and 41.3% (1,611/3,899) had an adjudicated diagnosis of acute heart failure, respectively. The negative predictive value (NPV) of guideline-recommended thresholds for BNP (100 pg/mL) and MR-proANP (120 pmol/L) was 93.6% (95% confidence interval 88.4-96.6%) and 95.6% (92.2-97.6%), respectively, whilst the positive predictive value (PPV) was 68.8% (62.9-74.2%) and 64.8% (56.3-72.5%). Significant heterogeneity in the performance of these thresholds was observed across important subgroups. CoDE-HF was well calibrated with excellent discrimination in those without prior acute heart failure for both BNP and MR-proANP (area under the curve of 0.914 [0.906-0.921] and 0.929 [0.919-0.939], and Brier scores of 0.110 and 0.094, respectively). CoDE-HF with BNP and MR-proANP identified 30% and 48% as low-probability (NPV of 98.5% [97.1-99.3%] and 98.5% [97.7-99.0%]), and 30% and 28% as high-probability (PPV of 78.6% [70.4-85.0%] and 75.1% [70.9-78.9%]), respectively, and performed consistently across subgroups.

Conclusion: The diagnostic performance of guideline-recommended BNP and MR-proANP thresholds for acute heart failure varied significantly across patient subgroups. A decision-support tool that combines natriuretic peptides and clinical variables was more accurate and supports more individualised diagnosis.

Study registration: PROSPERO number, CRD42019159407.

机器学习优化利钠肽在急性心力衰竭诊断中的应用。
目的:b型利钠肽(BNP)和中央区心房利钠肽(MR-proANP)检测被推荐用于急性心力衰竭的诊断。然而,这些生物标志物的诊断性能是不确定的。方法:我们进行了系统回顾和个体患者水平的数据荟萃分析,以评估BNP和MR-proANP的诊断性能。随后,我们开发并外部验证了一种名为CoDE-HF的决策支持工具,该工具将利钠肽浓度与临床变量结合使用机器学习来报告急性心力衰竭的可能性。结果:来自12个国家的14项研究提供了8,493例BNP患者和3,899例MR-proANP患者的个体患者水平数据,其中48.3%(4,105/8,493)和41.3%(1,611/3,899)分别确诊为急性心力衰竭。指南推荐阈值BNP (100 pg/mL)和MR-proANP (120 pmol/L)的阴性预测值(NPV)分别为93.6%(95%置信区间88.4 ~ 96.6%)和95.6%(92.2 ~ 97.6%),阳性预测值(PPV)分别为68.8%(62.9 ~ 74.2%)和64.8%(56.3 ~ 72.5%)。在重要的亚组中观察到这些阈值的表现存在显著的异质性。CoDE-HF对既往无急性心力衰竭患者的BNP和MR-proANP均具有良好的鉴别性(曲线下面积分别为0.914[0.906-0.921]和0.929 [0.919-0.939],Brier评分分别为0.110和0.094)。CoDE-HF合并BNP和MR-proANP分别确定30%和48%为低概率(NPV分别为98.5%[97.1-99.3%]和98.5%[97.7-99.0%]),30%和28%为高概率(PPV分别为78.6%[70.4% -85.0%]和75.1%[70.9-78.9%]),并且在亚组中表现一致。结论:指南推荐的BNP和MR-proANP阈值对急性心力衰竭的诊断性能在患者亚组之间存在显著差异。结合利钠肽和临床变量的决策支持工具更准确,支持更个性化的诊断。研究注册:PROSPERO号码,CRD42019159407。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
4.90%
发文量
325
期刊介绍: The European Heart Journal - Acute Cardiovascular Care (EHJ-ACVC) offers a unique integrative approach by combining the expertise of the different sub specialties of cardiology, emergency and intensive care medicine in the management of patients with acute cardiovascular syndromes. Reading through the journal, cardiologists and all other healthcare professionals can access continuous updates that may help them to improve the quality of care and the outcome for patients with acute cardiovascular diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信