{"title":"Study of the Chemical Composition and Anti-Inflammatory Mechanism of Shiyiwei Golden Pill Based on UPLC-Q-TOF/MS and Network Pharmacology.","authors":"Cong Han, Jing Chen, Chuanlin Shen, Qiuxia Liang, Ying An, Chaoyi Zhou, Kechun Liu, Qing Xia, Qiuxia He, Huazheng Zhang","doi":"10.2147/DDDT.S505880","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Shiyiwei Golden Pill (SYW) is a classic traditional prescription used to treat mKhris-pa according to the theory of Tibetan medicine. At present, SYW is widely used to treat cholecystitis in Tibetan areas. However, the chemical constituents and anti-inflammatory mechanisms are still largely undiscovered. This study aimed to investigate the chemical composition and anti-inflammatory effects of SYW, as well as its potential mechanisms.</p><p><strong>Methods: </strong>The components of SYW were identified using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The anti-inflammatory effects of SYW were determined on zebrafish and RAW264.7 cell inflammation models. Additionally, we predicted the targets and pathways of SYW to confirm its anti-inflammatory effects using network pharmacology approaches. Finally, a quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the expression of genes associated with anti-inflammatory pathways.</p><p><strong>Results: </strong>We identified 94 compounds in SYW, mainly alkaloids, phenols, and flavonoids. SYW inhibited inflammatory cell proliferation and migration in the three zebrafish inflammation models. In the RAW264.7 cell model, SYW suppressed the levels of NO and pro-inflammatory cytokines. In addition, network pharmacology analysis revealed that ALB, IL6, TNF, AKT1, and EGFR were identified as the potential key targets of SYW. KEGG enrichment and qRT-PCR analysis showed that PI3K/Akt/FoxO signaling pathway was involved in the anti-inflammatory effects of SYW.</p><p><strong>Conclusion: </strong>Herein, we identified 94 chemical constituents of SYW and demonstrated that SYW exerts anti-inflammatory effects by regulating the PI3K/Akt/FoxO signaling pathway.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"3159-3177"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S505880","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Shiyiwei Golden Pill (SYW) is a classic traditional prescription used to treat mKhris-pa according to the theory of Tibetan medicine. At present, SYW is widely used to treat cholecystitis in Tibetan areas. However, the chemical constituents and anti-inflammatory mechanisms are still largely undiscovered. This study aimed to investigate the chemical composition and anti-inflammatory effects of SYW, as well as its potential mechanisms.
Methods: The components of SYW were identified using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The anti-inflammatory effects of SYW were determined on zebrafish and RAW264.7 cell inflammation models. Additionally, we predicted the targets and pathways of SYW to confirm its anti-inflammatory effects using network pharmacology approaches. Finally, a quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the expression of genes associated with anti-inflammatory pathways.
Results: We identified 94 compounds in SYW, mainly alkaloids, phenols, and flavonoids. SYW inhibited inflammatory cell proliferation and migration in the three zebrafish inflammation models. In the RAW264.7 cell model, SYW suppressed the levels of NO and pro-inflammatory cytokines. In addition, network pharmacology analysis revealed that ALB, IL6, TNF, AKT1, and EGFR were identified as the potential key targets of SYW. KEGG enrichment and qRT-PCR analysis showed that PI3K/Akt/FoxO signaling pathway was involved in the anti-inflammatory effects of SYW.
Conclusion: Herein, we identified 94 chemical constituents of SYW and demonstrated that SYW exerts anti-inflammatory effects by regulating the PI3K/Akt/FoxO signaling pathway.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.