A Preprocessing Toolbox for 2-Photon Subcellular Calcium Imaging.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-05-29 Print Date: 2025-05-01 DOI:10.1523/ENEURO.0565-24.2025
Anqi Jiang, Chong Zhao, Mark E J Sheffield
{"title":"A Preprocessing Toolbox for 2-Photon Subcellular Calcium Imaging.","authors":"Anqi Jiang, Chong Zhao, Mark E J Sheffield","doi":"10.1523/ENEURO.0565-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Recording the spiking activity from subcellular compartments of neurons such as axons and dendrites during mouse behavior with 2-photon calcium imaging is increasingly common yet remains challenging due to low signal-to-noise, inaccurate region-of-interest (ROI) identification, movement artifacts, and difficulty in grouping ROIs from the same neuron. To address these issues, we present a computationally efficient preprocessing pipeline for subcellular signal detection, movement artifact identification, and ROI grouping. For subcellular signal detection, we capture the frequency profile of calcium transient dynamics by applying fast Fourier transform (FFT) on smoothed time-series calcium traces collected from axon ROIs. We then apply bandpass filtering methods (e.g., 0.05-0.12 Hz) to select ROIs that contain frequencies that match the power band of transients. To remove motion artifacts from <i>z</i>-plane movement, we apply principal component analysis on all calcium traces and use a bottom-up segmentation change-point detection model on the first principal component. After removing movement artifacts, we further identify calcium transients from noise by analyzing their prominence and duration. Finally, ROIs with high activity correlation are grouped using hierarchical or <i>k</i>-means clustering. Using axon ROIs in the CA1 region, we confirm that both clustering methods effectively determine the optimal number of clusters in pairwise correlation matrices, yielding similar groupings to \"ground truth\" data. Our approach provides a guideline for standardizing the extraction of physiological signals from subcellular compartments during rodent behavior with 2-photon calcium imaging.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0565-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recording the spiking activity from subcellular compartments of neurons such as axons and dendrites during mouse behavior with 2-photon calcium imaging is increasingly common yet remains challenging due to low signal-to-noise, inaccurate region-of-interest (ROI) identification, movement artifacts, and difficulty in grouping ROIs from the same neuron. To address these issues, we present a computationally efficient preprocessing pipeline for subcellular signal detection, movement artifact identification, and ROI grouping. For subcellular signal detection, we capture the frequency profile of calcium transient dynamics by applying fast Fourier transform (FFT) on smoothed time-series calcium traces collected from axon ROIs. We then apply bandpass filtering methods (e.g., 0.05-0.12 Hz) to select ROIs that contain frequencies that match the power band of transients. To remove motion artifacts from z-plane movement, we apply principal component analysis on all calcium traces and use a bottom-up segmentation change-point detection model on the first principal component. After removing movement artifacts, we further identify calcium transients from noise by analyzing their prominence and duration. Finally, ROIs with high activity correlation are grouped using hierarchical or k-means clustering. Using axon ROIs in the CA1 region, we confirm that both clustering methods effectively determine the optimal number of clusters in pairwise correlation matrices, yielding similar groupings to "ground truth" data. Our approach provides a guideline for standardizing the extraction of physiological signals from subcellular compartments during rodent behavior with 2-photon calcium imaging.

双光子亚细胞钙成像的预处理工具箱。
利用双光子钙成像技术记录小鼠行为过程中神经元亚细胞区室(如轴突和树突)的尖峰活动越来越普遍,但由于低信噪比、不准确的感兴趣区域(ROI)识别、运动伪影以及难以对来自同一神经元的ROI进行分组,仍然具有挑战性。为了解决这些问题,我们提出了一种计算效率高的预处理管道,用于亚蜂窝信号检测、运动伪迹识别和ROI分组。对于亚细胞信号检测,我们通过对从轴突roi收集的光滑时间序列钙痕迹应用快速傅里叶变换(FFT)来捕获钙瞬态动力学的频率分布。然后,我们应用带通滤波方法(例如0.05至0.12 Hz)来选择包含与瞬态功率带匹配的频率的roi。为了消除z平面运动中的运动伪影,我们对所有钙痕迹应用主成分分析,并在第一个主成分上使用自下而上的分割变化点检测模型。在去除运动伪影后,我们通过分析其显著性和持续时间进一步从噪声中识别钙瞬态。最后,使用分层或k-means聚类对具有高活动相关性的roi进行分组。使用CA1区域的轴突roi,我们证实两种聚类方法都有效地确定了成对相关矩阵中聚类的最佳数量,产生了与“基本事实”数据相似的分组。我们的方法为标准化提取啮齿动物行为过程中亚细胞区室的生理信号提供了指导。SUBPREP管道专门设计用于处理来自轴突、树突和其他亚细胞结构的钙成像数据,这些结构由于其低信噪比、易受运动伪影影响和复杂的形态而构成独特的挑战。该管道使研究人员能够从嘈杂的数据集中提取可靠的生理信号,使其优于手动或基于神经网络的方法。通过解决亚细胞成像中的关键瓶颈,该工具箱促进了预处理工作流程的标准化,这对于可重复性和交叉研究比较至关重要。随着亚细胞钙成像在神经科学研究中越来越普遍,这些改进尤其及时。SUBPREP的广泛应用潜力,加上其揭示深刻生物学见解的能力,使其对体内成像做出了宝贵的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信