Prediction of perimetric progression in ocular hypertension and open angle glaucoma based on corneal biomechanics.

IF 1.4 4区 医学 Q3 OPHTHALMOLOGY
Marta I Martínez-Sánchez, Gema Bolívar, Anna Dastiridou, Alberto Castaño, Carolina Bertoncini, Carlos Alonso, Purificación Escámez, Miguel A Teus
{"title":"Prediction of perimetric progression in ocular hypertension and open angle glaucoma based on corneal biomechanics.","authors":"Marta I Martínez-Sánchez, Gema Bolívar, Anna Dastiridou, Alberto Castaño, Carolina Bertoncini, Carlos Alonso, Purificación Escámez, Miguel A Teus","doi":"10.1177/11206721251340439","DOIUrl":null,"url":null,"abstract":"<p><p>PurposeTo identify parameters that are significant risk predictors of visual field (VF) progression in patients with ocular hypertension (OHT) or early primary open-angle glaucoma (POAG), using Goldmann applanation tonometry intraocular pressure (IOP-GAT), ultrasound pachymetry and biomechanical indices measured with the Corvis ST and the Ocular Response Analyser (ORA) and create a prediction model.MethodsA dataset of 65 eyes was analyzed. VF progression was determined using event analysis, the AGIS progression criteria, and experts' opinion. Progression was defined when 2 of the 3 criteria agreed on VF progression. The artificial intelligence training pipeline to predict the consolidated target consisted of an initial outlier removal process, feature selection, and training using the leave-one-out (LOO) cross-validation. Techniques based on decision trees with the XGBoost (Xtreme Gradient Boosting) algorithm were employed.ResultsThe results reveal that the most accurate predictors were those registered at 1-month follow-up, predicting glaucomatous VF progression with an accuracy of 86.2%. The main variables involved in the prediction were HC dArc length, HC Deflection Time, and the HC Deflection Length 1 month after PG therapy.ConclusionUsing AI models, glaucomatous VF progression can be predicted with relatively high accuracy using Corvis ST parameters registered one month after initiating PG treatment. Highest concavity parameters after 1 month of treatment are associated with an increased risk of perimetric progression.</p>","PeriodicalId":12000,"journal":{"name":"European Journal of Ophthalmology","volume":" ","pages":"11206721251340439"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/11206721251340439","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeTo identify parameters that are significant risk predictors of visual field (VF) progression in patients with ocular hypertension (OHT) or early primary open-angle glaucoma (POAG), using Goldmann applanation tonometry intraocular pressure (IOP-GAT), ultrasound pachymetry and biomechanical indices measured with the Corvis ST and the Ocular Response Analyser (ORA) and create a prediction model.MethodsA dataset of 65 eyes was analyzed. VF progression was determined using event analysis, the AGIS progression criteria, and experts' opinion. Progression was defined when 2 of the 3 criteria agreed on VF progression. The artificial intelligence training pipeline to predict the consolidated target consisted of an initial outlier removal process, feature selection, and training using the leave-one-out (LOO) cross-validation. Techniques based on decision trees with the XGBoost (Xtreme Gradient Boosting) algorithm were employed.ResultsThe results reveal that the most accurate predictors were those registered at 1-month follow-up, predicting glaucomatous VF progression with an accuracy of 86.2%. The main variables involved in the prediction were HC dArc length, HC Deflection Time, and the HC Deflection Length 1 month after PG therapy.ConclusionUsing AI models, glaucomatous VF progression can be predicted with relatively high accuracy using Corvis ST parameters registered one month after initiating PG treatment. Highest concavity parameters after 1 month of treatment are associated with an increased risk of perimetric progression.

基于角膜生物力学预测高眼压和开角型青光眼的周距进展。
目的利用Goldmann压眼压测量(眼压- gat)、超声测厚仪及Corvis ST和眼反应分析仪(ORA)测量的生物力学指标,探讨高眼压(OHT)或早期原发性开角型青光眼(POAG)患者视野(VF)进展的重要危险预测参数,并建立预测模型。方法对65只眼的数据集进行分析。通过事件分析、AGIS进展标准和专家意见确定VF进展。当3个标准中有2个符合VF进展时,确定进展。预测合并目标的人工智能训练管道包括初始异常值去除过程、特征选择和使用留一(LOO)交叉验证的训练。采用基于决策树的XGBoost (Xtreme Gradient Boosting)算法。结果结果显示,最准确的预测指标是随访1个月时登记的数据,预测青光眼VF进展的准确率为86.2%。预测的主要变量为HC dArc长度、HC偏转时间和PG治疗后1个月的HC偏转长度。结论应用AI模型,利用PG治疗1个月后登记的Corvis ST参数可以较准确地预测青光眼VF的进展。治疗1个月后的最高凹度参数与周围进展的风险增加相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
372
审稿时长
3-8 weeks
期刊介绍: The European Journal of Ophthalmology was founded in 1991 and is issued in print bi-monthly. It publishes only peer-reviewed original research reporting clinical observations and laboratory investigations with clinical relevance focusing on new diagnostic and surgical techniques, instrument and therapy updates, results of clinical trials and research findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信