Alexandra G Bardon, Jesus J Ballesteros, Scott L Brincat, Jefferson E Roy, Meredith K Mahnke, Yumiko Ishizawa, Emery N Brown, Earl K Miller
{"title":"Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations.","authors":"Alexandra G Bardon, Jesus J Ballesteros, Scott L Brincat, Jefferson E Roy, Meredith K Mahnke, Yumiko Ishizawa, Emery N Brown, Earl K Miller","doi":"10.1016/j.celrep.2025.115685","DOIUrl":null,"url":null,"abstract":"<p><p>Many anesthetics cause loss of consciousness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examine how anesthetic doses of ketamine and dexmedetomidine affect bilateral oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics increase phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varies. Neighboring prefrontal subregions within a hemisphere show decreased phase alignment with both drugs. Local analyses within a region suggest that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. In contrast, homologous areas across hemispheres become more aligned in phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those during waking and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115685"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115685","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many anesthetics cause loss of consciousness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examine how anesthetic doses of ketamine and dexmedetomidine affect bilateral oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics increase phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varies. Neighboring prefrontal subregions within a hemisphere show decreased phase alignment with both drugs. Local analyses within a region suggest that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. In contrast, homologous areas across hemispheres become more aligned in phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those during waking and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.