{"title":"Case report: Biphasic autonomic response in decompression sickness: HRV and sinoatrial findings.","authors":"Gerald Schmitz","doi":"10.3389/fphys.2025.1605779","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Decompression sickness (DCS) may involve neurological and cardiovascular systems, but cardiac autonomic dysfunction is rarely documented. Heart rate variability (HRV) can provide insight into autonomic modulation in such cases, particularly when incorporating advanced nonlinear and dynamic techniques.</p><p><strong>Case: </strong>We present a 35-year-old recreational diver who developed neurological DCS and persistent bradycardia following multiple consecutive dives. Neurological symptoms resolved with hyperbaric oxygen therapy (HBOT), but bradyarrhythmias persisted, prompting continuous monitoring.</p><p><strong>Methods: </strong>HRV was assessed using time-domain, frequency-domain, nonlinear, and dynamic analyses during HBOT and over two 24-h Holter recordings. Principal Dynamic Mode (PDM) analysis was employed to characterize autonomic control dynamics beyond conventional spectral markers.</p><p><strong>Results: </strong>During HBOT, the patient exhibited pronounced parasympathetic activity (RMSSD: 243 m; HF power: 8,656 m<sup>2</sup>; SD1: 172 m). Post-treatment, a shift toward sympathovagal imbalance was observed, with the LF/HF ratio rising from 1.53 to 3.80. Despite high total HRV power (38,549 m<sup>2</sup> during HBOT), SD1/SD2 ratio declined from 0.52 to 0.12, suggesting selective vagal withdrawal. PDM analysis showed a low PDM2/PDM1 ratio (0.42), consistent with preserved beat-to-beat vagal responsiveness but impaired long-range autonomic integration.</p><p><strong>Conclusion: </strong>This case illustrates a biphasic autonomic pattern in DCS-initial parasympathetic dominance followed by sympathetic tilt and desynchronization. Advanced nonlinear and dynamic HRV analysis revealed regulatory disturbances not captured by traditional methods, supporting its role in post-dive assessment and autonomic monitoring.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1605779"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1605779","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Decompression sickness (DCS) may involve neurological and cardiovascular systems, but cardiac autonomic dysfunction is rarely documented. Heart rate variability (HRV) can provide insight into autonomic modulation in such cases, particularly when incorporating advanced nonlinear and dynamic techniques.
Case: We present a 35-year-old recreational diver who developed neurological DCS and persistent bradycardia following multiple consecutive dives. Neurological symptoms resolved with hyperbaric oxygen therapy (HBOT), but bradyarrhythmias persisted, prompting continuous monitoring.
Methods: HRV was assessed using time-domain, frequency-domain, nonlinear, and dynamic analyses during HBOT and over two 24-h Holter recordings. Principal Dynamic Mode (PDM) analysis was employed to characterize autonomic control dynamics beyond conventional spectral markers.
Results: During HBOT, the patient exhibited pronounced parasympathetic activity (RMSSD: 243 m; HF power: 8,656 m2; SD1: 172 m). Post-treatment, a shift toward sympathovagal imbalance was observed, with the LF/HF ratio rising from 1.53 to 3.80. Despite high total HRV power (38,549 m2 during HBOT), SD1/SD2 ratio declined from 0.52 to 0.12, suggesting selective vagal withdrawal. PDM analysis showed a low PDM2/PDM1 ratio (0.42), consistent with preserved beat-to-beat vagal responsiveness but impaired long-range autonomic integration.
Conclusion: This case illustrates a biphasic autonomic pattern in DCS-initial parasympathetic dominance followed by sympathetic tilt and desynchronization. Advanced nonlinear and dynamic HRV analysis revealed regulatory disturbances not captured by traditional methods, supporting its role in post-dive assessment and autonomic monitoring.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.