In-situ bioremediation of vanadium contaminated soil using volatile fatty acids obtained from fruit and vegetable waste.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Aikelaimu Aihemaiti, Maimaiti Simayi, Gulimila Aikebaier, Abulimti Yumaier, Nuremanguli Tuersun, Yingjie Wang
{"title":"In-situ bioremediation of vanadium contaminated soil using volatile fatty acids obtained from fruit and vegetable waste.","authors":"Aikelaimu Aihemaiti, Maimaiti Simayi, Gulimila Aikebaier, Abulimti Yumaier, Nuremanguli Tuersun, Yingjie Wang","doi":"10.1080/15226514.2025.2500644","DOIUrl":null,"url":null,"abstract":"<p><p>Fatty acids (VFAs) that obtained from organic waste are environmentally friendly and readily available soil amendments that could enhance the bioremediation efficiency of vanadium (V)-contaminated soils. This study aimed to clarify the in-situ immobilization mechanisms of VFAs for actual V-contaminated soils in mining areas, and investigated the effects of varying concentrations of VFA application on the valence state, existing forms, bioavailability, and toxicity of V in soils, as well as the changes in plant growth, V uptake, and abundances of microbial species and their metal resistance genes. The findings revealed that the water-extractability, bioavailability, toxicity, and acid-soluble (F1) fractions of V reduced by up to 52.8%, 51.0%, 46.9%, and 81.7%, whereas the oxidizable (F3) and residual (F4) fractions increased by a factor of up to 3.1 and 1.1, following VFA addition. Consequently, the stem height of <i>Setaria viridis</i> increased by a factor of 4.5, and the reduction in V accumulation in shoots and roots were reached up to 95.4% and 67%. The VFA-induced soil pH decrement, along with the enhancement of soil organic matter content and the proliferation of <i>Proteobacteria</i> and its arsenic reduction genes, were the key factors influencing environmental behavior and biochemistry of V in contaminated soils.</p><p><p>This work investigated the effects of various concentrations of biomass derived VFAs on the bioavailability, mobility, toxicity and fractionation of V in contaminated soils, and elucidated their immobilization mechanisms. The reduction in soil pH, along with the increase in soil OM and AP content, are the primary abiotic factors influencing the valence state, bioavailability, and toxicity of vanadium in contaminated soils, whereas the enhancement of the abundances of Proteobacteria and their arsenic reduction genes represent the major biotic factors affecting these properties.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-12"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2500644","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fatty acids (VFAs) that obtained from organic waste are environmentally friendly and readily available soil amendments that could enhance the bioremediation efficiency of vanadium (V)-contaminated soils. This study aimed to clarify the in-situ immobilization mechanisms of VFAs for actual V-contaminated soils in mining areas, and investigated the effects of varying concentrations of VFA application on the valence state, existing forms, bioavailability, and toxicity of V in soils, as well as the changes in plant growth, V uptake, and abundances of microbial species and their metal resistance genes. The findings revealed that the water-extractability, bioavailability, toxicity, and acid-soluble (F1) fractions of V reduced by up to 52.8%, 51.0%, 46.9%, and 81.7%, whereas the oxidizable (F3) and residual (F4) fractions increased by a factor of up to 3.1 and 1.1, following VFA addition. Consequently, the stem height of Setaria viridis increased by a factor of 4.5, and the reduction in V accumulation in shoots and roots were reached up to 95.4% and 67%. The VFA-induced soil pH decrement, along with the enhancement of soil organic matter content and the proliferation of Proteobacteria and its arsenic reduction genes, were the key factors influencing environmental behavior and biochemistry of V in contaminated soils.

This work investigated the effects of various concentrations of biomass derived VFAs on the bioavailability, mobility, toxicity and fractionation of V in contaminated soils, and elucidated their immobilization mechanisms. The reduction in soil pH, along with the increase in soil OM and AP content, are the primary abiotic factors influencing the valence state, bioavailability, and toxicity of vanadium in contaminated soils, whereas the enhancement of the abundances of Proteobacteria and their arsenic reduction genes represent the major biotic factors affecting these properties.

利用果蔬废弃物挥发性脂肪酸原位生物修复钒污染土壤。
从有机废弃物中提取的脂肪酸是一种环境友好、易得的土壤改良剂,可提高钒污染土壤的生物修复效率。本研究旨在阐明VFA对矿区实际V污染土壤的原位固定化机制,研究不同浓度VFA对土壤中V的价态、存在形态、生物利用度和毒性的影响,以及植物生长、V吸收、微生物物种丰度及其金属抗性基因的变化。结果表明,添加VFA后,V的水萃取性、生物利用度、毒性和酸溶性(F1)组分分别降低了52.8%、51.0%、46.9%和81.7%,而可氧化性(F3)和残留(F4)组分分别增加了3.1和1.1倍。结果表明,绿狗尾草的茎高增加了4.5倍,茎部和根部的V积累量分别减少了95.4%和67%。vfa诱导的土壤pH降低、土壤有机质含量的增加、变形菌及其砷还原基因的增殖是影响污染土壤中V环境行为和生物化学的关键因素。本文研究了不同浓度的生物质源VFAs对污染土壤中V的生物有效性、流动性、毒性和分馏的影响,并阐明了其固定化机制。土壤pH值的降低以及土壤OM和AP含量的增加是影响污染土壤中钒的价态、生物有效性和毒性的主要非生物因素,而变形杆菌及其砷还原基因丰度的增强是影响这些特性的主要生物因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信