The Intrinsic Dimension of Neural Network Ensembles.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-18 DOI:10.3390/e27040440
Francesco Tosti Guerra, Andrea Napoletano, Andrea Zaccaria
{"title":"The Intrinsic Dimension of Neural Network Ensembles.","authors":"Francesco Tosti Guerra, Andrea Napoletano, Andrea Zaccaria","doi":"10.3390/e27040440","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we propose to study the collective behavior of different ensembles of neural networks. These sets define and live on complex manifolds that evolve through training. Each manifold is characterized by its intrinsic dimension, a measure of the variability of the ensemble and, as such, a measure of the impact of the different training strategies. Indeed, higher intrinsic dimension values imply higher variability among the networks and a larger parameter space coverage. Here, we quantify how much the training choices allow the exploration of the parameter space, finding that a random initialization of the parameters is a stronger source of variability than, progressively, data distortion, dropout, and batch shuffle. We then investigate the combinations of these strategies, the parameters involved, and the impact on the accuracy of the predictions, shedding light on the often-underestimated consequences of these training choices.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040440","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose to study the collective behavior of different ensembles of neural networks. These sets define and live on complex manifolds that evolve through training. Each manifold is characterized by its intrinsic dimension, a measure of the variability of the ensemble and, as such, a measure of the impact of the different training strategies. Indeed, higher intrinsic dimension values imply higher variability among the networks and a larger parameter space coverage. Here, we quantify how much the training choices allow the exploration of the parameter space, finding that a random initialization of the parameters is a stronger source of variability than, progressively, data distortion, dropout, and batch shuffle. We then investigate the combinations of these strategies, the parameters involved, and the impact on the accuracy of the predictions, shedding light on the often-underestimated consequences of these training choices.

神经网络集成的内在维数。
在这项工作中,我们建议研究不同神经网络集合的集体行为。这些集合定义并存在于通过训练进化的复杂流形上。每个流形都有其内在维度的特征,这是对整体可变性的衡量,因此也是对不同训练战略影响的衡量。事实上,更高的内在维值意味着网络之间更高的可变性和更大的参数空间覆盖。在这里,我们量化了训练选择允许对参数空间进行探索的程度,发现参数的随机初始化是比逐步的数据失真、dropout和批处理更强的可变性来源。然后,我们研究了这些策略的组合,所涉及的参数,以及对预测准确性的影响,揭示了这些训练选择经常被低估的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信