{"title":"A Cost-Effective Treatment of Spin-Orbit Couplings in the State-Averaged Driven Similarity Renormalization Group Second-Order Perturbation Theory.","authors":"Meng Wang, Chenyang Li","doi":"10.3390/molecules30092082","DOIUrl":null,"url":null,"abstract":"<p><p>We present an economical approach to treat spin-orbit coupling (SOC) in the state-averaged driven similarity renormalization group second-order perturbation theory (SA-DSRG-PT2). The electron correlation is first introduced by forming the SA-DSRG-PT2 dressed spin-free Hamiltonian. This Hamiltonian is then augmented with the Breit-Pauli Hamiltonian and diagonalized using spin-pure reference states to obtain the SOC-corrected energy spectrum. The spin-orbit mean-field approximation is also assumed to reduce the cost associated with the two-electron spin-orbit integrals. The resulting method is termed BP1-SA-DSRG-PT2c, and it possesses the same computational scaling as the non-relativistic counterpart, where only the one- and two-body density cumulants are required to obtain the vertical transition energy. The accuracy of BP1-SA-DSRG-PT2c is assessed on a few atoms and small molecules, including main-group diatomic molecules, transition-metal atoms, and actinide dioxide cations. Numerical results suggest that BP1-SA-DSRG-PT2c performs comparably to other internally contracted multireference perturbation theories with SOC treated using the state interaction scheme.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073789/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30092082","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present an economical approach to treat spin-orbit coupling (SOC) in the state-averaged driven similarity renormalization group second-order perturbation theory (SA-DSRG-PT2). The electron correlation is first introduced by forming the SA-DSRG-PT2 dressed spin-free Hamiltonian. This Hamiltonian is then augmented with the Breit-Pauli Hamiltonian and diagonalized using spin-pure reference states to obtain the SOC-corrected energy spectrum. The spin-orbit mean-field approximation is also assumed to reduce the cost associated with the two-electron spin-orbit integrals. The resulting method is termed BP1-SA-DSRG-PT2c, and it possesses the same computational scaling as the non-relativistic counterpart, where only the one- and two-body density cumulants are required to obtain the vertical transition energy. The accuracy of BP1-SA-DSRG-PT2c is assessed on a few atoms and small molecules, including main-group diatomic molecules, transition-metal atoms, and actinide dioxide cations. Numerical results suggest that BP1-SA-DSRG-PT2c performs comparably to other internally contracted multireference perturbation theories with SOC treated using the state interaction scheme.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.