Mirtazapine Loaded NLCs‑Based Hydrogel for Topical Delivery in Pruritus: Statistical Optimization, In vitro and Skin Irritation Evaluation.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Muhammad Akhtar, Aqeedat Javed, Abeer Tariq, Rashna Mirza, Ahmad Abdur Rahman, Hamid Khan, Ahmad Khan
{"title":"Mirtazapine Loaded NLCs‑Based Hydrogel for Topical Delivery in Pruritus: Statistical Optimization, <i>In vitro</i> and Skin Irritation Evaluation.","authors":"Muhammad Akhtar, Aqeedat Javed, Abeer Tariq, Rashna Mirza, Ahmad Abdur Rahman, Hamid Khan, Ahmad Khan","doi":"10.1080/03639045.2025.2495846","DOIUrl":null,"url":null,"abstract":"<p><p>Systemic mirtazapine (MRT) delivery for the treatment of pruritus exhibits severe side effects which needs to be addressed. For this purpose, topical nanostructured lipid carriers (NLCs) containing MRT were developed to minimize side effects and enhance therapeutic efficacy. The microemulsion method was utilized for the preparation of MRT loaded NLCs and the final optimized formulation was loaded in the gel for effective topical application. The formulation was optimized in terms of particle size (PS), zeta potential (ZP), polydispersity index (PDI), and percentage entrapment efficiency (% EE) by keeping in view the quantity of drug, tween 80 and lipids ratio. Optimized nano formulation exhibited the PS of 186.3 ± 1.2 nm, with 0.217 ± 0.03 PDI, ZP of -26.0 ± 0.2 mV and %EE of 86.3 ± 0.3%. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analysis confirmed the compatibility of components of nano formulation and encapsulation of drug inside lipid matrix, respectively. Further, the gel-based optimized MRT-loaded NLCs dispersion was analyzed for rheology and textural characterization. The prepared hydrogel (MRT-loaded NLCs gel) had a transparent appearance, non-gritty texture, pH, and spreadability of 322.33 ± 0.25%, respectively. MRT loaded NLCs gel exhibited a drug release of 81% in 24 h and followed Korsmeyer-Peppas model. <i>Ex vivo</i> skin permeation depicted only 6.20 µg/cm<sup>2</sup> drug permeation across the skin after 24 h. Skin irritation study showed no signs of erythema and edema in nano formulation-treated group. MRT-loaded NLCs gel was formulated successfully and may be used as a promising vehicle for topical delivery of pruritus.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"634-646"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2495846","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Systemic mirtazapine (MRT) delivery for the treatment of pruritus exhibits severe side effects which needs to be addressed. For this purpose, topical nanostructured lipid carriers (NLCs) containing MRT were developed to minimize side effects and enhance therapeutic efficacy. The microemulsion method was utilized for the preparation of MRT loaded NLCs and the final optimized formulation was loaded in the gel for effective topical application. The formulation was optimized in terms of particle size (PS), zeta potential (ZP), polydispersity index (PDI), and percentage entrapment efficiency (% EE) by keeping in view the quantity of drug, tween 80 and lipids ratio. Optimized nano formulation exhibited the PS of 186.3 ± 1.2 nm, with 0.217 ± 0.03 PDI, ZP of -26.0 ± 0.2 mV and %EE of 86.3 ± 0.3%. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analysis confirmed the compatibility of components of nano formulation and encapsulation of drug inside lipid matrix, respectively. Further, the gel-based optimized MRT-loaded NLCs dispersion was analyzed for rheology and textural characterization. The prepared hydrogel (MRT-loaded NLCs gel) had a transparent appearance, non-gritty texture, pH, and spreadability of 322.33 ± 0.25%, respectively. MRT loaded NLCs gel exhibited a drug release of 81% in 24 h and followed Korsmeyer-Peppas model. Ex vivo skin permeation depicted only 6.20 µg/cm2 drug permeation across the skin after 24 h. Skin irritation study showed no signs of erythema and edema in nano formulation-treated group. MRT-loaded NLCs gel was formulated successfully and may be used as a promising vehicle for topical delivery of pruritus.

负载米氮平的基于NLCs的水凝胶用于瘙痒症局部递送:统计优化,体外和皮肤刺激评估。
全身米氮平(MRT)递送治疗瘙痒表现出严重的副作用,需要解决。为此,研究人员开发了含有MRT的局部纳米结构脂质载体(NLCs),以减少副作用并提高治疗效果。采用微乳液法制备载MRT的NLCs,并将优化后的配方装入凝胶中,有效外用。以药量、tween 80、脂质比为指标,从粒径(PS)、ζ电位(ZP)、多分散指数(PDI)、包封率(% EE)等方面对配方进行优化。优化后的纳米配方PS为186.3±1.2 nm, PDI为0.217±0.03,ZP为-26.0±0.2 mV, %EE为86.3±0.3%。傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)分析分别证实了纳米制剂成分的相容性和药物在脂质基质内的包封性。此外,凝胶基优化的mrt负载NLCs分散体进行了流变学和结构表征分析。制备的水凝胶(mrt负载NLCs凝胶)外观透明,质地无砂砾,pH值为322.33±0.25%,涂抹性为322.33±0.25%。MRT载NLCs凝胶24 h释药率为81%,符合Korsmeyer-Peppas模型。体外皮肤渗透24小时后,药物在皮肤上的渗透仅为6.20µg/cm2。皮肤刺激研究显示,纳米制剂治疗组未出现红斑和水肿迹象。mrt负载NLCs凝胶配制成功,可作为一种有前途的载体局部递送瘙痒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信