{"title":"GALNT14 deficiency: connecting multiple links in the IgA nephropathy pathogenetic chain.","authors":"John Pell,Madhav C Menon","doi":"10.1172/jci192687","DOIUrl":null,"url":null,"abstract":"IgA nephropathy (IgAN) is a highly prevalent type of primary glomerulonephritis. IgAN involves mesangial deposition of immune complexes leading to complement activation, inflammation, and glomerular injury. A key hit for pathogenesis involves aberrant O-glycosylation in the hinge region of IgA. Despite its prevalence, however, the mechanisms underlying IgAN remain incompletely understood. In this issue of the JCI, Prakash and colleagues used whole-exome sequencing of two IgAN probands to identify loss-of-function variants in GALNT14 leading to loss of the enzyme GalNAc-T14, which is involved in O-glycosylation. The authors then performed a classical bedside-to-bench investigation using a Galnt14-/- mouse model and connected loss of GalNAc-T14 to excess IgA production, impaired B lymphocyte homing, and defective intestinal mucus production. These findings build a more unified understanding of IgAN pathogenesis from defective O-glycosylation with loss-of-function variants in GALNT14.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci192687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
IgA nephropathy (IgAN) is a highly prevalent type of primary glomerulonephritis. IgAN involves mesangial deposition of immune complexes leading to complement activation, inflammation, and glomerular injury. A key hit for pathogenesis involves aberrant O-glycosylation in the hinge region of IgA. Despite its prevalence, however, the mechanisms underlying IgAN remain incompletely understood. In this issue of the JCI, Prakash and colleagues used whole-exome sequencing of two IgAN probands to identify loss-of-function variants in GALNT14 leading to loss of the enzyme GalNAc-T14, which is involved in O-glycosylation. The authors then performed a classical bedside-to-bench investigation using a Galnt14-/- mouse model and connected loss of GalNAc-T14 to excess IgA production, impaired B lymphocyte homing, and defective intestinal mucus production. These findings build a more unified understanding of IgAN pathogenesis from defective O-glycosylation with loss-of-function variants in GALNT14.