Hee Kyung Yoon, Yaelan Jung, Andrew S Persichetti, Daniel D Dilks
{"title":"A scene-selective region in the superior parietal lobule for visually guided navigation.","authors":"Hee Kyung Yoon, Yaelan Jung, Andrew S Persichetti, Daniel D Dilks","doi":"10.1093/cercor/bhaf082","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence indicates that the occipital place area (OPA) is involved in \"visually guided navigation.\" Here, we propose that a recently uncovered scene-selective region in the superior parietal lobule is also involved in visually guided navigation. First, using functional magnetic resonance imaging (fMRI), we found that the superior parietal lobule (SPL) responds significantly more to scene stimuli than to face and object stimuli across two sets of stimuli (i.e. dynamic and static), confirming its scene selectivity. Second, we found that the SPL, like the OPA, processes two kinds of information necessary for visually guided navigation: first-person perspective motion and sense (left/right) information in scenes. Third, resting-state fMRI data revealed that SPL is preferentially connected to OPA, compared to other scene-selective regions, indicating that SPL and OPA are part of the same system. Fourth, analysis of previously published fMRI data showed that SPL, like OPA, responds significantly more while participants perform a visually guided navigation task compared to both a scene categorization task and a baseline task, further supporting our hypothesis in an independent dataset. Taken together, these findings indicate the existence of a new scene-selective region for visually guided navigation and raise interesting questions about the precise role that SPL, compared to OPA, may play within visually guided navigation.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf082","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Growing evidence indicates that the occipital place area (OPA) is involved in "visually guided navigation." Here, we propose that a recently uncovered scene-selective region in the superior parietal lobule is also involved in visually guided navigation. First, using functional magnetic resonance imaging (fMRI), we found that the superior parietal lobule (SPL) responds significantly more to scene stimuli than to face and object stimuli across two sets of stimuli (i.e. dynamic and static), confirming its scene selectivity. Second, we found that the SPL, like the OPA, processes two kinds of information necessary for visually guided navigation: first-person perspective motion and sense (left/right) information in scenes. Third, resting-state fMRI data revealed that SPL is preferentially connected to OPA, compared to other scene-selective regions, indicating that SPL and OPA are part of the same system. Fourth, analysis of previously published fMRI data showed that SPL, like OPA, responds significantly more while participants perform a visually guided navigation task compared to both a scene categorization task and a baseline task, further supporting our hypothesis in an independent dataset. Taken together, these findings indicate the existence of a new scene-selective region for visually guided navigation and raise interesting questions about the precise role that SPL, compared to OPA, may play within visually guided navigation.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.