Advancing yeast metabolism for a sustainable single carbon bioeconomy.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Miriam Kuzman, Özge Ata, Diethard Mattanovich
{"title":"Advancing yeast metabolism for a sustainable single carbon bioeconomy.","authors":"Miriam Kuzman, Özge Ata, Diethard Mattanovich","doi":"10.1093/femsyr/foaf020","DOIUrl":null,"url":null,"abstract":"<p><p>Single carbon (C1) molecules are considered as valuable substrates for biotechnology, as they serve as intermediates of carbon dioxide recycling, and enable bio-based production of a plethora of substances of our daily use without relying on agricultural plant production. Yeasts are valuable chassis organisms for biotech production, and they are able to use C1 substrates either natively or as synthetic engineered strains. This minireview highlights native yeast pathways for methanol and formate assimilation, their engineering, and the realization of heterologous C1 pathways including CO2, in different yeast species. Key features determining the choice among C1 substrates are discussed, including their chemical nature and specifics of their assimilation, their availability, purity, and concentration as raw materials, as well as features of the products to be made from them.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"25 ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020471/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single carbon (C1) molecules are considered as valuable substrates for biotechnology, as they serve as intermediates of carbon dioxide recycling, and enable bio-based production of a plethora of substances of our daily use without relying on agricultural plant production. Yeasts are valuable chassis organisms for biotech production, and they are able to use C1 substrates either natively or as synthetic engineered strains. This minireview highlights native yeast pathways for methanol and formate assimilation, their engineering, and the realization of heterologous C1 pathways including CO2, in different yeast species. Key features determining the choice among C1 substrates are discussed, including their chemical nature and specifics of their assimilation, their availability, purity, and concentration as raw materials, as well as features of the products to be made from them.

促进酵母代谢,实现可持续的单碳生物经济。
单碳(C1)分子被认为是生物技术有价值的底物,因为它们是二氧化碳循环利用的中间体,并使我们日常使用的大量物质的生物生产成为可能,而不依赖于农业植物生产。酵母是生物技术生产中有价值的基础生物,它们能够使用原生或合成工程菌株的C1底物。这篇综述主要介绍了天然酵母对甲醇和甲酸盐的同化途径,它们的工程,以及在不同酵母物种中异种C1途径(包括CO2)的实现。讨论了决定C1底物选择的关键特征,包括它们的化学性质和同化特性,它们的可用性,纯度和作为原料的浓度,以及由它们制成的产品的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信