Johanne Grosbois, Vlastimil Srsen, Alba Muñoz Grande, Helen M Picton, Evelyn E Telfer
{"title":"Reproductive seasonality influences follicle dynamics and the ovarian extracellular matrix structural properties in ewes.","authors":"Johanne Grosbois, Vlastimil Srsen, Alba Muñoz Grande, Helen M Picton, Evelyn E Telfer","doi":"10.1530/REP-25-0010","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Although sheep have been widely used as a large animal model for human ovarian biology, unlike women, they display a marked seasonality of breeding activity, the underlying mechanisms and extent of ovarian changes of which remain largely undefined. This study reveals the active remodeling of the ovarian extracellular matrix across the reproductive season, which could be an additional driver responsible for the observed variations in ovarian morphometry and follicle dynamics.</p><p><strong>Abstract: </strong>Ovarian function requires dynamic tissue remodeling provided by its extracellular matrix (ECM). In seasonal breeders, ovaries undergo an additional circannual cycle of recrudescence and regression. While increasing evidence suggests that the ECM impacts normal ovarian cyclicity and function, how its components are remodeled across reproductive seasonality has not been explored in large mammals. Using immunohistological and in vitro experiments, we investigated the influence of reproductive seasonality on ovarian morphometry, ECM properties and follicle developmental potential in vitro. Ovarian weight and volume were reduced during anestrus (P < 0.001). Neither follicular density nor the proportion of preantral follicles and earlier stages of development were impacted by the season, but the percentage of antral follicles increased during anestrus (P = 0.028), while corpora lutea were only present in ovaries collected during the breeding season. Concomitantly, ovarian ECM composition was significantly remodeled, with stromal collagen and fibronectin significantly increased (P < 0.01) and laminin decreased (P = 0.032) during anestrus compared to the breeding season. This correlated with thicker collagen fibers both in the stroma and in the tunica albuginea during anestrus. In vitro, preantral follicles isolated from their native environment exhibited a season-dependent pattern of follicular integrity, survival, antrum formation and growth. These results suggest the establishment of a stiffer ovarian microenvironment during anestrus, which, together with endocrine changes, regulates follicle growth, demise and the ovulatory response.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-25-0010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In brief: Although sheep have been widely used as a large animal model for human ovarian biology, unlike women, they display a marked seasonality of breeding activity, the underlying mechanisms and extent of ovarian changes of which remain largely undefined. This study reveals the active remodeling of the ovarian extracellular matrix across the reproductive season, which could be an additional driver responsible for the observed variations in ovarian morphometry and follicle dynamics.
Abstract: Ovarian function requires dynamic tissue remodeling provided by its extracellular matrix (ECM). In seasonal breeders, ovaries undergo an additional circannual cycle of recrudescence and regression. While increasing evidence suggests that the ECM impacts normal ovarian cyclicity and function, how its components are remodeled across reproductive seasonality has not been explored in large mammals. Using immunohistological and in vitro experiments, we investigated the influence of reproductive seasonality on ovarian morphometry, ECM properties and follicle developmental potential in vitro. Ovarian weight and volume were reduced during anestrus (P < 0.001). Neither follicular density nor the proportion of preantral follicles and earlier stages of development were impacted by the season, but the percentage of antral follicles increased during anestrus (P = 0.028), while corpora lutea were only present in ovaries collected during the breeding season. Concomitantly, ovarian ECM composition was significantly remodeled, with stromal collagen and fibronectin significantly increased (P < 0.01) and laminin decreased (P = 0.032) during anestrus compared to the breeding season. This correlated with thicker collagen fibers both in the stroma and in the tunica albuginea during anestrus. In vitro, preantral follicles isolated from their native environment exhibited a season-dependent pattern of follicular integrity, survival, antrum formation and growth. These results suggest the establishment of a stiffer ovarian microenvironment during anestrus, which, together with endocrine changes, regulates follicle growth, demise and the ovulatory response.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.