Taking fear back into the Marginal Value Theorem: the rMVT and optimal boldness.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-05-13 DOI:10.1093/evolut/qpaf100
Vincent Calcagno, Frédéric Grognard, Frédéric M Hamelin, Ludovic Mailleret
{"title":"Taking fear back into the Marginal Value Theorem: the rMVT and optimal boldness.","authors":"Vincent Calcagno, Frédéric Grognard, Frédéric M Hamelin, Ludovic Mailleret","doi":"10.1093/evolut/qpaf100","DOIUrl":null,"url":null,"abstract":"<p><p>Foragers exploiting heterogeneous habitats make strategic movement decisions to maximize fitness. Charnov's Marginal Value Theorem (MVT) models the sequential visit of habitat patches and their distribution to predict the optimal time allocation strategy. However, it notoriously ignores the effects of predation risk. Brown's giving-up density (GUD) theory is an alternative that includes predation risk. However, it is more abstract and does not have the specificity or graphical appeal of the MVT. Here, we formally introduce the rMVT (r stands for risk), a generalization of the MVT that incorporates predation risks. The rMVT retains the structure and graphical simplicity of the MVT, but implies a shift from residence time to expected dose of risk (micromorts) as the domain over which rate-maximization occurs. We show that the rMVT can handle most types of risk, whereas the GUD-theory is valid only for specific forms of risk. Applications of the rMVT show that different types of risk can yield opposite responses of optimal strategies to an increase in the risk level, and predict differential behavioral responses observed in experimental versus natural conditions. The rMVT also predicts the optimal level of risk taking, or \"optimal boldness\", and suggests that individuals should generally be bolder in riskier habitats.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf100","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Foragers exploiting heterogeneous habitats make strategic movement decisions to maximize fitness. Charnov's Marginal Value Theorem (MVT) models the sequential visit of habitat patches and their distribution to predict the optimal time allocation strategy. However, it notoriously ignores the effects of predation risk. Brown's giving-up density (GUD) theory is an alternative that includes predation risk. However, it is more abstract and does not have the specificity or graphical appeal of the MVT. Here, we formally introduce the rMVT (r stands for risk), a generalization of the MVT that incorporates predation risks. The rMVT retains the structure and graphical simplicity of the MVT, but implies a shift from residence time to expected dose of risk (micromorts) as the domain over which rate-maximization occurs. We show that the rMVT can handle most types of risk, whereas the GUD-theory is valid only for specific forms of risk. Applications of the rMVT show that different types of risk can yield opposite responses of optimal strategies to an increase in the risk level, and predict differential behavioral responses observed in experimental versus natural conditions. The rMVT also predicts the optimal level of risk taking, or "optimal boldness", and suggests that individuals should generally be bolder in riskier habitats.

把恐惧带回边际价值定理:rMVT和最优大胆度。
利用异质栖息地的觅食者会做出战略性的运动决策,以最大限度地提高适应性。利用Charnov边际值定理(MVT)对生境斑块的顺序访问及其分布进行建模,预测最优时间分配策略。然而,众所周知,它忽略了被捕食风险的影响。布朗的放弃密度(GUD)理论是一种包含捕食风险的替代理论。然而,它更抽象,不具有MVT的特异性或图形吸引力。在这里,我们正式地介绍rMVT (r代表风险),它是MVT的概括,包含了捕食风险。rMVT保留了MVT的结构和图形的简单性,但是暗示了从停留时间到预期风险剂量(微morts)的转变,作为发生速率最大化的域。我们表明rMVT可以处理大多数类型的风险,而gud理论仅对特定形式的风险有效。rMVT的应用表明,不同类型的风险会对风险水平的增加产生相反的最优策略反应,并预测了实验条件下与自然条件下观察到的不同行为反应。rMVT还预测了风险承担的最佳水平,或“最佳大胆度”,并建议个体在风险较高的栖息地通常应该更大胆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信