Characteristics analysis of a single electromechanical arm driven by a functional neural circuit.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-04-22 DOI:10.1007/s11571-025-10218-0
Xinlin Song, Ya Wang, Zhenhua Yu, Feifei Yang
{"title":"Characteristics analysis of a single electromechanical arm driven by a functional neural circuit.","authors":"Xinlin Song, Ya Wang, Zhenhua Yu, Feifei Yang","doi":"10.1007/s11571-025-10218-0","DOIUrl":null,"url":null,"abstract":"<p><p>From a biological viewpoint, the muscle tissue produces efficient gait behavior that can be adjusted by neural signals. From the physical viewpoint, the limb movement can be simulated by applying a neural circuit to control the artificial electromechanical arm (EA). In this paper, a functional neural circuit is used to excite a single EA, the load circuit attached to the moving beam is driven by a neural circuit, and the Ampere force is activated by the load circuit to control the artificial EA. The dynamic equations of the neural circuit are derived using Kirchhoff's theorem, while the energy and motion equations of the beam are computed through the application of mechanics and related theoretical principles. Furthermore, the dynamic characteristics of the functional neural circuit forced EA are analyzed. The results indicate that the beam movement can be controlled by the electrical activity of this functional neural circuit. This work will provide theoretical guidance to build the electromechanical device for complex gait behaviors.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"65"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10218-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

From a biological viewpoint, the muscle tissue produces efficient gait behavior that can be adjusted by neural signals. From the physical viewpoint, the limb movement can be simulated by applying a neural circuit to control the artificial electromechanical arm (EA). In this paper, a functional neural circuit is used to excite a single EA, the load circuit attached to the moving beam is driven by a neural circuit, and the Ampere force is activated by the load circuit to control the artificial EA. The dynamic equations of the neural circuit are derived using Kirchhoff's theorem, while the energy and motion equations of the beam are computed through the application of mechanics and related theoretical principles. Furthermore, the dynamic characteristics of the functional neural circuit forced EA are analyzed. The results indicate that the beam movement can be controlled by the electrical activity of this functional neural circuit. This work will provide theoretical guidance to build the electromechanical device for complex gait behaviors.

功能神经回路驱动单机电臂的特性分析。
从生物学的角度来看,肌肉组织产生有效的步态行为,可以通过神经信号来调节。从物理角度来看,利用神经回路控制人工机电臂可以模拟肢体运动。本文采用功能神经回路激励单个EA,通过神经回路驱动附着在运动梁上的负载电路,通过负载电路激活安培力来控制人工EA。利用基尔霍夫定理推导了神经回路的动力学方程,应用力学及相关理论原理计算了梁的能量方程和运动方程。在此基础上,分析了功能神经回路的动态特性。结果表明,该功能神经回路的电活动可以控制束的运动。该工作将为构建适应复杂步态行为的机电装置提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信