{"title":"Characteristics analysis of a single electromechanical arm driven by a functional neural circuit.","authors":"Xinlin Song, Ya Wang, Zhenhua Yu, Feifei Yang","doi":"10.1007/s11571-025-10218-0","DOIUrl":null,"url":null,"abstract":"<p><p>From a biological viewpoint, the muscle tissue produces efficient gait behavior that can be adjusted by neural signals. From the physical viewpoint, the limb movement can be simulated by applying a neural circuit to control the artificial electromechanical arm (EA). In this paper, a functional neural circuit is used to excite a single EA, the load circuit attached to the moving beam is driven by a neural circuit, and the Ampere force is activated by the load circuit to control the artificial EA. The dynamic equations of the neural circuit are derived using Kirchhoff's theorem, while the energy and motion equations of the beam are computed through the application of mechanics and related theoretical principles. Furthermore, the dynamic characteristics of the functional neural circuit forced EA are analyzed. The results indicate that the beam movement can be controlled by the electrical activity of this functional neural circuit. This work will provide theoretical guidance to build the electromechanical device for complex gait behaviors.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"65"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10218-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
From a biological viewpoint, the muscle tissue produces efficient gait behavior that can be adjusted by neural signals. From the physical viewpoint, the limb movement can be simulated by applying a neural circuit to control the artificial electromechanical arm (EA). In this paper, a functional neural circuit is used to excite a single EA, the load circuit attached to the moving beam is driven by a neural circuit, and the Ampere force is activated by the load circuit to control the artificial EA. The dynamic equations of the neural circuit are derived using Kirchhoff's theorem, while the energy and motion equations of the beam are computed through the application of mechanics and related theoretical principles. Furthermore, the dynamic characteristics of the functional neural circuit forced EA are analyzed. The results indicate that the beam movement can be controlled by the electrical activity of this functional neural circuit. This work will provide theoretical guidance to build the electromechanical device for complex gait behaviors.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.