Pauline Hessenauer, Nicolas Feau, Renate Heinzelmann, Richard C Hamelin
{"title":"Genomic Exploration of Climate-driven Evolution and Evolutionary Convergence in Forest Pathogens.","authors":"Pauline Hessenauer, Nicolas Feau, Renate Heinzelmann, Richard C Hamelin","doi":"10.1093/gbe/evaf069","DOIUrl":null,"url":null,"abstract":"<p><p>Climate significantly influences the distribution, composition, and diversity of fungal communities, impacting the growth, spread, and virulence of fungal forest pathogens. This study employs advanced landscape genomics methods to explore the genomic adaptations of three major fungal pathogens: Those responsible for Dutch elm disease, dothistroma needle blight, and Swiss needle cast. Our findings reveal that precipitation and humidity are primary drivers of adaptation in these species. We use these insights to forecast potential adaptations under future climate scenarios (genomic offset) and identify specific genes and pathways associated with climate responses in each pathogen. Notably, we detect a convergence in moisture adaptation across these distantly related species, particularly in genes related to the cytoskeleton and transporters. This study enhances our understanding of fungal pathogen evolution in response to climate change, offering crucial insights for forest disease management.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"17 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf069","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate significantly influences the distribution, composition, and diversity of fungal communities, impacting the growth, spread, and virulence of fungal forest pathogens. This study employs advanced landscape genomics methods to explore the genomic adaptations of three major fungal pathogens: Those responsible for Dutch elm disease, dothistroma needle blight, and Swiss needle cast. Our findings reveal that precipitation and humidity are primary drivers of adaptation in these species. We use these insights to forecast potential adaptations under future climate scenarios (genomic offset) and identify specific genes and pathways associated with climate responses in each pathogen. Notably, we detect a convergence in moisture adaptation across these distantly related species, particularly in genes related to the cytoskeleton and transporters. This study enhances our understanding of fungal pathogen evolution in response to climate change, offering crucial insights for forest disease management.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.