Self-intercalated 6R-TaS2 with reduced symmetry for room temperature nonlinear Hall effect

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-05-15 DOI:10.1016/j.matt.2025.102153
Shengqiang Wu, Wanghao Tian, Runlai Li, Ziyi Han, Xuan Zhou, Song Huang, Ping Li, Peng Song, Xiaoxu Zhao
{"title":"Self-intercalated 6R-TaS2 with reduced symmetry for room temperature nonlinear Hall effect","authors":"Shengqiang Wu, Wanghao Tian, Runlai Li, Ziyi Han, Xuan Zhou, Song Huang, Ping Li, Peng Song, Xiaoxu Zhao","doi":"10.1016/j.matt.2025.102153","DOIUrl":null,"url":null,"abstract":"The coexistence of multiple phases in two-dimensional (2D) materials enables exotic functionalities via inter-phase proximity and charge effects, but the controlled growth mechanism for heterophase 2D superlattices remains elusive. Herein, we successfully grew a highly crystalline self-intercalated 2D 6R-phase TaS<sub>2</sub> (ic-2D 6R-TaS<sub>2</sub>) crystal by chemical vapor transport. A robust in-plane nonlinear Hall effect (NLHE) was observed in low symmetrical ic-2D 6R-TaS<sub>2</sub> material (<em>C</em><sub><em>1v</em></sub>), i.e., 2–3 orders of magnitude higher than WTe<sub>2</sub> and MoTe<sub>2</sub>. Density functional theory (DFT) calculations revealed a strong Berry curvature dipole in the ic-2D 6R-TaS<sub>2</sub> crystal, triggered by band crossings near the Fermi level and universally present in a library of ic-2D transition metal dichalcogenide (TMDC) heterophase superlattices, e.g., Nb<sub>1+x</sub>S<sub>2</sub>, Ta<sub>1+x</sub>Se<sub>2</sub>, etc. Our findings thus provide the atomic insights for the intercalated stabilized growth mechanism of heterophase superlattices and propose a class of ic-2D heterophase TMDC superlattices as potential candidates for NLHE nanodevices.","PeriodicalId":388,"journal":{"name":"Matter","volume":"29 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102153","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The coexistence of multiple phases in two-dimensional (2D) materials enables exotic functionalities via inter-phase proximity and charge effects, but the controlled growth mechanism for heterophase 2D superlattices remains elusive. Herein, we successfully grew a highly crystalline self-intercalated 2D 6R-phase TaS2 (ic-2D 6R-TaS2) crystal by chemical vapor transport. A robust in-plane nonlinear Hall effect (NLHE) was observed in low symmetrical ic-2D 6R-TaS2 material (C1v), i.e., 2–3 orders of magnitude higher than WTe2 and MoTe2. Density functional theory (DFT) calculations revealed a strong Berry curvature dipole in the ic-2D 6R-TaS2 crystal, triggered by band crossings near the Fermi level and universally present in a library of ic-2D transition metal dichalcogenide (TMDC) heterophase superlattices, e.g., Nb1+xS2, Ta1+xSe2, etc. Our findings thus provide the atomic insights for the intercalated stabilized growth mechanism of heterophase superlattices and propose a class of ic-2D heterophase TMDC superlattices as potential candidates for NLHE nanodevices.

Abstract Image

室温非线性霍尔效应中对称性降低的自插层6R-TaS2
二维(2D)材料中的多相共存通过相间接近和电荷效应实现了奇异的功能,但异相二维超晶格的受控生长机制仍然是难以捉摸的。通过化学气相输运,我们成功地生长出了一种高结晶自插层2D 6r相TaS2 (ic-2D 6R-TaS2)晶体。低对称ic-2D 6R-TaS2材料(C1v)具有鲁棒的面内非线性霍尔效应(NLHE),即比WTe2和MoTe2高2-3个数量级。密度泛函理论(DFT)计算表明,ic-2D 6R-TaS2晶体中存在强Berry曲率偶极子,由费米能级附近的带交叉触发,普遍存在于ic-2D过渡金属二硫族化物(TMDC)异相超晶格库中,如Nb1+xS2, Ta1+xSe2等。因此,我们的发现为异相超晶格的插层稳定生长机制提供了原子见解,并提出了一类ic-2D异相TMDC超晶格作为NLHE纳米器件的潜在候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信