Hai-Xiang Zhu, Lu Meng, Yao Ma, Ning Li, Wei Chen, Shi-Lin Zhu
{"title":"Constraining the DDD* three-body bound state via the Zc(3900) pole","authors":"Hai-Xiang Zhu, Lu Meng, Yao Ma, Ning Li, Wei Chen, Shi-Lin Zhu","doi":"10.1103/physrevd.111.094022","DOIUrl":null,"url":null,"abstract":"In this study, we propose using the Z</a:mi>c</a:mi></a:msub>(</a:mo>3900</a:mn>)</a:mo></a:math> pole position to constrain the existence of the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>D</e:mi><e:mi>D</e:mi><e:msup><e:mi>D</e:mi><e:mo>*</e:mo></e:msup></e:math> three-body bound state within the one-boson-exchange (OBE) model. The existence of the <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>D</g:mi><g:mi>D</g:mi><g:msup><g:mi>D</g:mi><g:mo>*</g:mo></g:msup></g:math> bound state remains uncertain due to significant variations in the OBE interaction, particularly in the strength of scalar-meson-exchange interactions, which can differ by a factor about 20 between two commonly used OBE models. This discrepancy renders the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>D</i:mi><i:mi>D</i:mi><i:msup><i:mi>D</i:mi><i:mo>*</i:mo></i:msup></i:math> system highly model-dependent. To address this issue, we constrain the scalar-meson-exchange interaction using the <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>Z</k:mi><k:mi>c</k:mi></k:msub><k:mo stretchy=\"false\">(</k:mo><k:mn>3900</k:mn><k:mo stretchy=\"false\">)</k:mo></k:math> pole position, where the pseudoscalar-meson coupling is well-determined, and the <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>ρ</o:mi></o:math>- and <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>ω</q:mi></q:math>-exchange interactions nearly cancel each other out, leaving the coupling constant of the <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>σ</s:mi></s:math>-exchange as the only unknown parameter. Our results indicate that the isospin-<u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mfrac><u:mn>1</u:mn><u:mn>2</u:mn></u:mfrac></u:math> <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>D</w:mi><w:mi>D</w:mi><w:msup><w:mi>D</w:mi><w:mo>*</w:mo></w:msup></w:math> bound states exist when <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msub><y:mi>Z</y:mi><y:mi>c</y:mi></y:msub><y:mo stretchy=\"false\">(</y:mo><y:mn>3900</y:mn><y:mo stretchy=\"false\">)</y:mo></y:math> is a virtual state of <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mrow><cb:mi>D</cb:mi><cb:msup><cb:mrow><cb:mover accent=\"true\"><cb:mrow><cb:mi>D</cb:mi></cb:mrow><cb:mrow><cb:mo stretchy=\"false\">¯</cb:mo></cb:mrow></cb:mover></cb:mrow><cb:mrow><cb:mo>*</cb:mo></cb:mrow></cb:msup><cb:mo>/</cb:mo><cb:mover accent=\"true\"><cb:mrow><cb:mi>D</cb:mi></cb:mrow><cb:mrow><cb:mo stretchy=\"false\">¯</cb:mo></cb:mrow></cb:mover><cb:msup><cb:mrow><cb:mi>D</cb:mi></cb:mrow><cb:mrow><cb:mo>*</cb:mo></cb:mrow></cb:msup></cb:mrow></cb:math> located within approximately <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mo>−</ib:mo><ib:mn>15</ib:mn><ib:mtext> </ib:mtext><ib:mtext> </ib:mtext><ib:mi>MeV</ib:mi></ib:math> of the threshold. However, the three-body bound state is gone when the <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:msub><kb:mi>Z</kb:mi><kb:mi>c</kb:mi></kb:msub><kb:mo stretchy=\"false\">(</kb:mo><kb:mn>3900</kb:mn><kb:mo stretchy=\"false\">)</kb:mo></kb:math> virtual state pole is more than 20 MeV away from the threshold. Each experimental progress, either on the <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:mi>D</ob:mi><ob:mi>D</ob:mi><ob:msup><ob:mi>D</ob:mi><ob:mo>*</ob:mo></ob:msup></ob:math> state or the <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:msub><qb:mi>Z</qb:mi><qb:mi>c</qb:mi></qb:msub><qb:mo stretchy=\"false\">(</qb:mo><qb:mn>3900</qb:mn><qb:mo stretchy=\"false\">)</qb:mo></qb:math>, can shed light on the nature of the other state. Another significant outcome is a refined set of OBE model parameters calibrated using the pole positions of <ub:math xmlns:ub=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ub:mi>X</ub:mi><ub:mo stretchy=\"false\">(</ub:mo><ub:mn>3872</ub:mn><ub:mo stretchy=\"false\">)</ub:mo></ub:math>, <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:msub><yb:mi>T</yb:mi><yb:mrow><yb:mi>c</yb:mi><yb:mi>c</yb:mi></yb:mrow></yb:msub><yb:mo stretchy=\"false\">(</yb:mo><yb:mn>3875</yb:mn><yb:mo stretchy=\"false\">)</yb:mo></yb:math>, and <cc:math xmlns:cc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cc:msub><cc:mi>Z</cc:mi><cc:mi>c</cc:mi></cc:msub><cc:mo stretchy=\"false\">(</cc:mo><cc:mn>3900</cc:mn><cc:mo stretchy=\"false\">)</cc:mo></cc:math>, rigorously addressing the cutoff dependence. These parameters provide a valuable resource for more accurate calculations of systems involving few-body <gc:math xmlns:gc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gc:mi>D</gc:mi></gc:math>, <ic:math xmlns:ic=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ic:msup><ic:mi>D</ic:mi><ic:mo>*</ic:mo></ic:msup></ic:math>, and their antiparticles. Additionally, we find no evidence of the <kc:math xmlns:kc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kc:mi>D</kc:mi><kc:mi>D</kc:mi><kc:msup><kc:mi>D</kc:mi><kc:mo>*</kc:mo></kc:msup></kc:math> three-body resonances after extensive search using a combination of the Gaussian expansion method and the complex scaling method. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"13 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.094022","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose using the Zc(3900) pole position to constrain the existence of the DDD* three-body bound state within the one-boson-exchange (OBE) model. The existence of the DDD* bound state remains uncertain due to significant variations in the OBE interaction, particularly in the strength of scalar-meson-exchange interactions, which can differ by a factor about 20 between two commonly used OBE models. This discrepancy renders the DDD* system highly model-dependent. To address this issue, we constrain the scalar-meson-exchange interaction using the Zc(3900) pole position, where the pseudoscalar-meson coupling is well-determined, and the ρ- and ω-exchange interactions nearly cancel each other out, leaving the coupling constant of the σ-exchange as the only unknown parameter. Our results indicate that the isospin-12DDD* bound states exist when Zc(3900) is a virtual state of DD¯*/D¯D* located within approximately −15MeV of the threshold. However, the three-body bound state is gone when the Zc(3900) virtual state pole is more than 20 MeV away from the threshold. Each experimental progress, either on the DDD* state or the Zc(3900), can shed light on the nature of the other state. Another significant outcome is a refined set of OBE model parameters calibrated using the pole positions of X(3872), Tcc(3875), and Zc(3900), rigorously addressing the cutoff dependence. These parameters provide a valuable resource for more accurate calculations of systems involving few-body D, D*, and their antiparticles. Additionally, we find no evidence of the DDD* three-body resonances after extensive search using a combination of the Gaussian expansion method and the complex scaling method. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.