Concurrent superimposed ice formation and meltwater runoff on Greenland’s ice slabs

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Andrew Tedstone, Horst Machguth, Nicole Clerx, Nicolas Jullien, Hannah Picton, Julien Ducrey, Dirk van As, Paolo Colosio, Marco Tedesco, Stef Lhermitte
{"title":"Concurrent superimposed ice formation and meltwater runoff on Greenland’s ice slabs","authors":"Andrew Tedstone, Horst Machguth, Nicole Clerx, Nicolas Jullien, Hannah Picton, Julien Ducrey, Dirk van As, Paolo Colosio, Marco Tedesco, Stef Lhermitte","doi":"10.1038/s41467-025-59237-9","DOIUrl":null,"url":null,"abstract":"<p>Rivers and slush fields on the Greenland Ice Sheet increasingly develop in locations where the accumulation zone hosts near-impermeable ice slabs. However, the division between runoff versus retention in these areas remains unmeasured. We present field measurements of superimposed ice formation onto slabs around the visible runoff limit. The quantity of superimposed ice varies by proximity to visible surface water and the surface slope, highlighting that meltwater can flow laterally before refreezing. We use heat conduction modelling and radar observations of autumn wetness to show that in our field area in 2022, 65% of superimposed ice formed during summer and the rest during autumn in the relict supraglacial hydrological network. Overall, 84% of melt around the visible runoff limit refroze. Ice-sheet-wide we estimate that slabs refroze 56 gigatonnes of melt (26-69 gigatonnes according to slab extent) between 2017 and 2022. Slabs are thus both hotspots of refreezing and emerging zones of runoff.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"123 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59237-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rivers and slush fields on the Greenland Ice Sheet increasingly develop in locations where the accumulation zone hosts near-impermeable ice slabs. However, the division between runoff versus retention in these areas remains unmeasured. We present field measurements of superimposed ice formation onto slabs around the visible runoff limit. The quantity of superimposed ice varies by proximity to visible surface water and the surface slope, highlighting that meltwater can flow laterally before refreezing. We use heat conduction modelling and radar observations of autumn wetness to show that in our field area in 2022, 65% of superimposed ice formed during summer and the rest during autumn in the relict supraglacial hydrological network. Overall, 84% of melt around the visible runoff limit refroze. Ice-sheet-wide we estimate that slabs refroze 56 gigatonnes of melt (26-69 gigatonnes according to slab extent) between 2017 and 2022. Slabs are thus both hotspots of refreezing and emerging zones of runoff.

Abstract Image

同时叠加的冰形成和融水径流在格陵兰冰盖上
格陵兰冰原上的河流和泥地越来越多地在堆积带拥有几乎不透水的冰盖的地方发展。然而,在这些地区,径流与滞留之间的区别仍然无法测量。我们提出了在可见径流极限附近的平板上叠加冰形成的实地测量结果。叠加冰的数量因接近可见的地表水和地表坡度而异,突出表明融水在重新冻结之前可以横向流动。我们利用热传导模型和秋季湿度雷达观测结果表明,在我们的野外地区,在2022年,残留的冰川上水文网络中,65%的叠加冰在夏季形成,其余在秋季形成。总的来说,在可见的径流极限附近,84%的融水重新冻结。我们估计,在2017年至2022年期间,在整个冰盖范围内,板块重新冻结了560亿吨融水(根据板块范围,为26-69亿吨)。因此,冰层既是重新冻结的热点,也是径流的新兴地带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信