Zhisen Yang, Hong Wei, Yulin Gan, Huihui Liu, Yang Cao, Huihui An, Xiuzheng Que, Yongxiang Gao, Lizhe Zhu, Shutang Tan, Xin Liu, Linfeng Sun
{"title":"Structural insights into auxin influx mediated by the Arabidopsis AUX1","authors":"Zhisen Yang, Hong Wei, Yulin Gan, Huihui Liu, Yang Cao, Huihui An, Xiuzheng Que, Yongxiang Gao, Lizhe Zhu, Shutang Tan, Xin Liu, Linfeng Sun","doi":"10.1016/j.cell.2025.04.028","DOIUrl":null,"url":null,"abstract":"Auxin is crucial in orchestrating diverse aspects of plant growth and development and modulating responses to environmental signals. The asymmetric spatiotemporal distribution of auxin generates local gradient patterns, which are regulated by both cellular auxin influx and efflux. The AUXIN1/LIKE-AUX1 (AUX1/LAX) family transporters have been identified as major auxin influx carriers. Here, we characterize the auxin uptake mediated by AUX1 from <em>Arabidopsis thaliana</em>. Using cryoelectron microscopy (cryo-EM), we determine its structure in three states: the auxin-unbound, the auxin-bound, and the competitive inhibitor, 3-chloro-4-hydroxyphenylacetic acid (CHPAA)-bound state. All structures adopt an inward-facing conformation. In the auxin-bound structure, indole-3-acetic acid (IAA) is coordinated to AUX1 primarily through hydrogen bonds with its carboxyl group. The functional roles of key residues in IAA binding are validated by <em>in vitro</em> and <em>in planta</em> analyses. CHPAA binds to the same site as IAA. These findings advance our understanding of auxin transport in plants.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"28 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.04.028","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Auxin is crucial in orchestrating diverse aspects of plant growth and development and modulating responses to environmental signals. The asymmetric spatiotemporal distribution of auxin generates local gradient patterns, which are regulated by both cellular auxin influx and efflux. The AUXIN1/LIKE-AUX1 (AUX1/LAX) family transporters have been identified as major auxin influx carriers. Here, we characterize the auxin uptake mediated by AUX1 from Arabidopsis thaliana. Using cryoelectron microscopy (cryo-EM), we determine its structure in three states: the auxin-unbound, the auxin-bound, and the competitive inhibitor, 3-chloro-4-hydroxyphenylacetic acid (CHPAA)-bound state. All structures adopt an inward-facing conformation. In the auxin-bound structure, indole-3-acetic acid (IAA) is coordinated to AUX1 primarily through hydrogen bonds with its carboxyl group. The functional roles of key residues in IAA binding are validated by in vitro and in planta analyses. CHPAA binds to the same site as IAA. These findings advance our understanding of auxin transport in plants.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.